Appendix A. Dataset

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A. Dataset

Appendix A. Dataset. (Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems)

Table A. Soil organic C stocks under no-till (NT) and inversion tillage (IT), and associated characteristics (site, cropping system and soil textural class) from the selected studies Site characteristics Reference Site (mean annual data) Cropping system Soil Soil organic C NT vs. IT Location Coordinates Precip. Temp. Aridity Organic C inputs DIrela Texture (SOC)b (relative) (0-30 cm, (mm) (ºC) (P/ETP) (Mg C ha-1 year-1) Mg C ha-1) NT IT NT IT Àlvaro-Fuentes et al.(2008) Selvanera, Spain (41°50'N; 1°17'E) 475 13.9 0.59 silt loam 46.60 53.16 -0.123 Agramunt, Spain (41°48'N; 1°7'E) 430 14.2 0.54 silt loam 41.10 39.63 0.037 Peñaflor, Spain (41°44'N; 0°46'E) 390 14.5 0.48 silt loam 39.50 39.11 0.010 Peñaflor, Spain (41°44'N; 0°46'E) 390 14.5 0.48 silt loam 34.50 33.01 0.045 Black & Tanaka (1997) Mandan, ND, USA (46°46'N; 100°55'W) 400 5.2 0.67 0.733 0.743 -0.014 silt loam 61.17 64.38 -0.050 Mandan, ND, USA (46°46'N; 100°55'W) 400 5.2 0.67 0.729 0.725 0.006 silt loam 57.58 65.21 -0.117 Mandan, ND, USA (46°46'N; 100°55'W) 400 5.2 0.67 0.752 0.767 -0.019 silt loam 58.47 70.16 -0.167 Mandan, ND, USA (46°46'N; 100°55'W) 400 5.2 0.67 1.173 1.074 0.092 silt loam 73.45 49.43 0.486 Mandan, ND, USA (46°46'N; 100°55'W) 400 5.2 0.67 1.326 1.129 0.175 silt loam 71.18 63.12 0.128 Mandan, ND, USA (46°46'N; 100°55'W) 400 5.2 0.67 1.415 1.182 0.196 silt loam 77.37 66.47 0.164 Blanco-Canqui & Lal (2008) Glasgow, KY, USA (37°0'N; 85°55'W) 1342 13.3 1.66 silt 33.09 22.25 0.487 Fremont, OH, USA (41°21'N; 83°5'W) 870 9.4 1.28 silt 42.14 34.88 0.208 Calegari et al. (2008) Pato Branco, PR, Brazil (26°07'S; 52°41' W) 1329 18.1 1.54 clay 81.92 79.41 0.032 Pato Branco, PR, Brazil (26°07'S; 52°41' W) 1329 18.1 1.54 clay 94.03 88.24 0.066 Pato Branco, PR, Brazil (26°07'S; 52°41' W) 1329 18.1 1.54 clay 87.95 87.49 0.005 Pato Branco, PR, Brazil (26°07'S; 52°41' W) 1329 18.1 1.54 clay 95.36 92.71 0.029 Continued Table A. (Contd.) Pato Branco, PR, Brazil (26°07'S; 52°41' W) 1329 18.1 1.54 clay 92.83 94.44 -0.017 Pato Branco, PR, Brazil (26°07'S; 52°41' W) 1329 18.1 1.54 clay 96.92 92.41 0.049 Carter (2005) Prince Edwards Island, Canada (46°28'N; 63°10'W) 1073 5.4 1.98 1.819 1.781 0.021 sand 52.10 53.10 -0.019 Christopher et al. (2009) MRCSP (P98), IN, USA (40°55'N; 86°43'W) 951 9.4 1.41 sand 37.50 76.30 -0.509 MRCSP (P114b), IN, USA (39°11'N; 87°12'W) 1022 11.3 1.37 silt 45.50 37.40 0.217 MRCSP (P122), IN, USA (38°15'N; 86°14'W) 1142 12.1 1.42 silt 19.30 23.80 -0.189 MRCSP (P99), OH, USA (40°57'N; 84°27'W) 923 10.9 1.32 clay 21.90 23.20 -0.056 MRCSP (P111a), OH, USA (39°50'N; 84°33'W) 965 9.4 1.34 silt 44.00 38.50 0.143 MRCSP (P111b), OH, USA (40°24'N; 83°14'W) 933 10.3 1.38 silt 51.80 39.50 0.311 MRCSP (P111c), OH, USA (40°43'N; 81°53'W) 925 10.2 1.41 silt 24.40 25.60 -0.047 MRCSP (P111d), OH, USA (39°39'N; 84°12'W) 965 11.1 1.34 silt 34.70 40.10 -0.135 MRCSP (P124), OH, USA (40°16'N; 81°39'W) 1004 11.9 1.49 silt 34.60 26.70 0.296 MRCSP (P126), OH, USA (39°29'N; 81°26'W) 1028 12.3 1.38 silt 36.60 51.20 -0.285 MRCSP (P127), PA, USA (41°07'N; 78°45'W) 1075 8.8 1.72 silt 53.40 66.50 -0.197 MRCSP (P147), PA, USA (41°02'N; 76°43'W) 920 9.2 1.38 clay 49.10 44.90 0.094 Hermitage, Warwick, QLD, Dalal (1989) Australia (28°12'S;152°06'E) 1150 16.9 1.24 clay 53.30 51.51 0.035 Elora Research Station, Deen & Kataki (2003) Guelph , ON, Canada (43°42'N; 80°18'W) 917 6.7 1.56 3.732 4.355 -0.143 silt 71.04 74.90 -0.052 Diaz-Zorita (1999) Buenos Aires, Argentina (34°54'S; 63°44'W) 1005 16.2 1.21 sand 72.62 62.33 0.165 Dick et al. (1986) Hoytville, OH, USA (41°11'N; 83°47'W) 845 9.5 1.24 2.131 2.379 -0.104 clay 76.10 80.25 -0.052 Hoytville, OH, USA (41°11'N; 83°47'W) 845 9.5 1.24 clay 72.88 68.41 0.065 Hoytville, OH, USA (41°11'N; 83°47'W) 845 9.5 1.24 clay 81.71 77.90 0.049 Dolan et al. (2006) Rosemount, MN, USA (44°45'N; 93°04'W) 820 7.0 1.27 0.680 0.750 -0.093 silt 95.20 98.37 -0.032 Rosemount, MN, USA (44°45'N; 93°04'W) 820 7.0 1.27 0.840 0.900 -0.067 silt 98.64 101.44 -0.028 Continued Table A. (Contd.) Rosemount, MN, USA (44°45'N; 93°04'W) 820 7.0 1.27 2.470 2.850 -0.133 silt 88.80 111.70 -0.205 Rosemount, MN, USA (44°45'N; 93°04'W) 820 7.0 1.27 3.290 3.550 -0.073 silt 107.03 107.61 -0.005 Doran et al. (1998) Sidney, NE, USA (41°12'N; 103°W) 446 8.5 0.71 clay 34.73 34.48 0.007 Sidney, NE, USA (41°12'N; 103°W) 446 8.5 0.71 silt loam 55.34 52.37 0.057 Du et al. ( 2010) c Luancheng Agro. Exp. Stat., China (37º53'N; 114º41'E) 851 12.2 1.01 3.400 3.700 -0.081 silt 45.56 46.26 -0.015 Follet et al. (2005)c,d El Bajio, Celaya, Mexico (20°52'N; 100°48'W) 1495 18.7 1.76 2.750 2.325 0.183 clay 58.30 43.90 0.328 El Bajio, Celaya, Mexico (20°52'N; 100°48'W) 1495 18.7 1.76 4.300 4.300 0.000 clay 58.10 49.90 0.164 El Bajio, Celaya, Mexico (20°52'N; 100°48'W) 1495 18.7 1.76 6.125 6.275 -0.024 clay 62.80 50.90 0.234 El Bajio, Celaya, Mexico (20°52'N; 100°48'W) 1495 18.7 1.76 1.750 1.875 -0.067 clay 45.30 45.20 0.002 El Bajio, Celaya, Mexico (20°52'N; 100°48'W) 1495 18.7 1.76 3.050 2.975 0.025 clay 45.20 45.40 -0.004 El Bajio, Celaya, Mexico (20°52'N; 100°48'W) 1495 18.7 1.76 3.850 3.800 0.013 clay 46.70 45.40 0.029 Gál et al. (2007) West Lafayette, IN, USA (40°28'N; 86°56'W) 934 10.6 1.29 silt 107.02 96.54 0.109 Halvorson et al. (2002) Mandan, ND, USA (46°49'N; 100°53'W) 430 5.3 0.66 1.680 1.820 -0.077 silt loam 68.55 77.10 -0.111 Mandan, ND, USA (46°49'N; 100°53'W) 430 5.3 0.66 3.350 2.970 0.128 silt loam 75.24 70.39 0.069 Hermle et al. (2008) Tänikon, Switzerland (47°28'N; 8°54'E) 1183 8.4 1.95 sand 52.86 56.13 -0.058 Hernanz et al. (2002) Alcalá de Henares, Spain (40°29'N; 3°22'W) 412 13.1 0.53 3.213 2.835 0.133 silt loam 36.80 35.13 0.048 Alcalá de Henares, Spain (40°29'N; 3°22'W) 412 13.1 0.53 1.575 1.638 -0.038 silt loam 34.90 30.93 0.128 Huggins et al. (2007) Waseca, MN, USA (44°04'N; 93°32'W) 823 6.3 1.32 6.643 6.429 0.033 clay 123.38 111.23 0.109 Waseca, MN, USA (44°04'N; 93°32'W) 823 6.3 1.32 5.714 5.571 0.026 clay 114.98 106.95 0.075 Waseca, MN, USA (44°04'N; 93°32'W) 823 6.3 1.32 3.429 3.571 -0.040 clay 119.18 110.40 0.079 Ismail et al. (1994) Lexington, KY, USA (38°03'N; 84°29'W) 1138 12.7 1.47 2.474 2.752 -0.101 silt 55.40 48.85 0.134 Lexington, KY, USA (38°03'N; 84°29'W) 1138 12.7 1.47 3.901 3.925 -0.006 silt 58.35 56.30 0.036 Lexington, KY, USA (38°03'N; 84°29'W) 1138 12.7 1.47 4.367 4.215 0.036 silt 58.90 56.40 0.044 Lexington, KY, USA (38°03'N; 84°29'W) 1138 12.7 1.47 3.762 3.750 0.003 silt 60.95 61.35 -0.007 Continued Table A. (Contd.) Jantalia et al. (2007) EMBRAPA Cerrados, Plantaltina, DF, Brazil (15°35'S; 47°42'W) 1524 20.6 1.73 silt loam 85.90 64.80 0.326 EMBRAPA Cerrados, Plantaltina, DF, Brazil (15°35'S; 47°42'W) 1524 20.6 1.73 silt loam 81.30 69.50 0.170 Jarecki & Lal (2005) Geauga Farm, OH, USA (41°29'N; 81°07'W) 1043 8.4 1.55 silt 49.10 40.86 0.202 Kettler et al. (2000) Sidney, NE, USA (41°12'N; 103°W) 410 9.0 0.65 silt 36.68 35.89 0.022 Sidney, NE, USA (41°12'N; 103°W) 410 9.0 0.65 silt 41.43 37.10 0.117 Mielke et al. (1986) Elwood, IL, USA (41°24'N; 88°05'W) 888 9.6 1.27 silt 51.33 47.23 0.087 Lexington, KY, USA (38°03'N; 84°29'W) 1051 12.6 1.36 silt 62.03 54.07 0.147 Lincoln, NE, USA (40°48'N; 96°42'W) 812 10.4 1.09 silt 106.82 108.54 -0.016 Sidney, NE, USA (41°12'N; 103°W) 443 8.5 0.71 silt loam 88.62 80.28 0.104 Sidney, NE, USA (41°12'N; 103°W) 443 8.5 0.71 silt loam 33.90 33.70 0.006 Müller et al. (2008) Zollikofen, Switzerland (46°59'N; 7°26'E) 784 10.6 1.30 silt loam 111.87 109.41 0.023 Olson et al. (2005) DeSoto, IL, USA (37°48'N; 89°14'W) 975 12.8 1.23 silt loam 38.95 29.15 0.336 Puget & Lal (2005) Columbus, OH, USA (40°04'N; 83°04'W) 1014 10.8 1.42 silt 90.90 88.50 0.027 Sa et al. (2001) Ponta Grossa, PN, Brazil (24°36'S; 50°23'W) 1532 16.5 1.95 sand 97.50 89.83 0.085 Sisti et al. (2004) Passo Fundo, RS, Brazil (28°15'S; 52°24'W) 1686 18.8 1.91 3.400 3.200 0.062 sand 60.90 62.20 -0.021 Passo Fundo, RS, Brazil (28°15'S; 52°24'W) 1686 18.8 1.91 4.490 4.150 0.082 sand 64.70 59.30 0.091 Passo Fundo, RS, Brazil (28°15'S; 52°24'W) 1686 18.8 1.91 4.470 4.280 0.044 sand 69.60 60.50 0.150 Thomas et al. (2007) St George, QLD, Australia (28°35'S; 148°49'E) 620 19.8 0.64 clay 30.53 29.13 0.048 Ussiri & Lal (2009) South Charleston, OH, USA (39º45'N; 83º36'W) 1037 10.8 1.54 silt 82.11 44.81 0.832 Venterea et al. (2006) Rosemount, MN, USA (44°45'N; 93°04'W) 712 7.8 1.10 silt 100.56 101.95 -0.014 Wander et al. (1998) Perry, IL, USA (39°47'N; 90°44'W) 980 11.4 1.29 silt 29.76 26.78 0.111 Monmouth, IL, Usa (40°55'N; 90°38'W) 930 10.5 1.27 silt 57.84 45.63 0.268 DeKalb, IL, USA (41°56'N; 88°55'W) 940 8.8 1.40 clay 91.39 92.51 -0.012 Wanniarachchi et al. (1999) Delhi, ON, Canada (42°52'N; 80°31'W) 949 7.8 1.54 4.294 4.415 -0.027 sand 95.32 101.36 -0.060 Continued Table A. (Contd.) Whelan Research Farm, ON, Yang et al. (2008) Canada (42°18'N; 82°47'W) 831 8.9 1.26 clay 65.57 65.88 -0.005 Yang & Kay (2001) Brady (Guelph), ON, Canada (43°42'N; 80°18'W) 943 6.7 1.61 sand 175.22 105.08 0.667 Fox (Guelph), ON, Canada (43°42'N; 80°18'W) 943 6.7 1.61 sand 127.63 112.92 0.130 Huron (Guelph), ON, Canada (43°42'N; 80°18'W) 943 6.7 1.61 silt 61.90 57.20 0.082 Yang & Wander (1999) Urbana, IL, USA (40°06'N; 88°12'W) 954 10.8 1.30 silt 57.03 59.07 -0.035 aDIrel: relative yearly C input differences between NT and IT plots: ((Inputs NT-Inputs IT)/Inputs IT). Organic C inputs calculated from crop yield or annual crop residue production (if not given by the authors), assuming a C content of 45% in the plant tissues. The conversion from grain yields was done using harvest indexes from Sisti et al. (2002). bSOC stocks for an equivalent mass of that of the most compacted treatment at each site. Calculated from SOC concentration and bulk density data, if not provided by the authors. cValues of P were calculated as the addition of natural precipitation and the irrigation water applied, using average irrigation doses given by the authors. dTexture data from authors (Castellanos, personal communication) MRCSP: Midwest Regional Carbon Sequestration Partnership.

References

Àlvarez R, Russo ME, Prystupa P, Scheiner JD, Blotta L (1998) Soil carbon pools under convencional and no-tillage systems in the Argentine rolling pampa. Agron J 90:138-143. Black AL, Tanaka DL (1997) A conservation tillage-cropping systems study in the Northern Great Plains of the United States. In: Paul EA, Elliott ET, Paustian K, Cole CV (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, Florida, pp 335-342. Blanco-Canqui H, Lal R (2008) No-Tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci Soc Am J. 72: 693-701. Calegari A, Hargrove WL, Rheinheimer DDS, Ralisch R, Tessier D, de Tourdonnet S, Guimaraes MdF (2008) Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: a model for sustainability. Agron J 100:1013-1019. Carter MR (2005) Long-term tillage effects on cool-season soybean in rotation with barley, soil properties and carbon and nitrogen storage for fine sandy loams in the humid climate of Atlantic Canada. Soil Till Res 81:109-120. Christopher SF, Lal R, Mishra U (2009) Regional study of no-till effects on carbon sequestration in the Midwestern United States. Soil Sci Soc Am J 73/207-216. Dalal RC (1989) Long-term effects of no-tillage, crop residue, and nitrogen application on properties of a Vertisol. Soil Sci Soc Am J 53:1511-1515. Deen W, Kataki PK (2003) Carbon sequestration in a long-term conventional versus conservation tillage experiment. Soil Till Res 74:143-150. Diaz-Zorita M (1999) Six years of tillage in an Hapludoll from northwestern Buenos Aires, Argentina.. Ciencia del Suelo 17:31-36. Dick WA, van Doren DM, Triplett GB, Henry JE (1986) Influence of long-term tillage and rotation combinations on crop yields and selected soil parameters. I. Results obtained for a Mollic Ochraqualf soil. Research Bulletin N° 1180, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio. Dolan MS, Clapp CE, Allmaras RR, Baker JM, Molina JAE (2006) Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Till Res 8: 221-231. Doran JW, Elliott ET, Paustian K (1998) Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil Till Res 49:3-18. Du Z, Ren T, Hu C (2010) Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain. Soil Sci Soc Am J 74:196- 202. Follett RF, Castellanos JZ, Buenger ED (2005) Carbon dynamics and sequestration in an irrigated Vertisol in Central Mexico. Soil Till Res 83:148- 158. Gál A, Vyn TJ, Michéli E, Kladivko EJ, McFee WW (2007) Soil carbon and nitrogen accumulation with long-term no-till versus mouldboard plowing overestimated with tilled-zone sampling depths. Soil Till Res 96:42-51. Halvorson AD, Wienhold BJ, Black AL (2002) Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci Soc Am J 66:906- 912. Hermle S, Anken T, Leifeld J, Weisskopf P (2008) The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. Soil Till Res 98:94-105. Hernanz JL, Lopez R, Navarrete L, Sanchez-Giron V (2002) Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Till Res 66:129-141. Huggins DR, Allmaras RR, Clapp CE, Lamb JA, Randall GW (2007) Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci Soc Am J 71:145-154. Ismail I, Blevins RL, Frye WW (1994) Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci Soc Am J 58:193-198. Jantalia CP, Resck DVS, Alves BJR, Zotarelli L, Urquiaga S, Boddey RM (2007) Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Till Res 95:97-109. Jarecki MK, Lal R (2005) Soil organic carbon sequestration rates in two long-term no-till experiments in Ohio. Soil Sci 170:280-291. Kettler TA, Lyon DJ, Doran JW, Powers WL, Stroup WW (2000) Soil quality assessment after weed-control tillage in a no-till wheat-fallow cropping system. Soil Sci Soc Am J 64:339-346. Mielke LN, Doran, JW, Richards KA. (1986). Physical environment near the surface of plowed and no-tilled soils. Soil Till Res 7:355-366. Müller M, Schafflützel R, Chervet A, Sturny WG, Zihlmann U, Weisskopf P (2008) Teneurs en humus après onze ans de semis direct ou de labour. Rev Suisse Agric 40:5-10. Olson KR, Langa JM, Ebelharb SA. (2005) Soil organic carbon changes after 12 years of no tillage and tillage of Grantsburg soils in southern Illinois. Soil Till Res 81:217-225. Puget P, Lal R (2005) Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Till Res 80:201-213. Sa JCM, Cerri CC, Dick WA, Lal R, Venske Filho SP, Piccolo MC, Feigl BE (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci Soc Am J 65:1486-1499. Sisti CPJ, dos Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76:39-58. Thomas GA, Dalal RC, Standley J (2007No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Till Res 94:295-304. Ussiri DAN, Lal R (2009) Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Till Res 104:39-47. Venterea RT, Baker JM, Dolan MS, Spokas KA (2006) Carbon and nitrogen storage are greater under biennial tillage in a Minnesota corn-soybean rotation. Soil Sci Soc Am J 70:1752-1762. Wander MM, Bidart MG, Aref S (1998) Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci Soc Am J 62:1704-1711. Wanniarachchi SD, Voroney RP, Vyn TJ, Beyaert RP, MacKenzie AF (1999) Tillage effects on the dynamics of total and corn-reside-derived soil organic matter in two southern Ontario soils. Can J Soil Sci 79:463-480. Yang XM, Drury CF, Reynolds WD, Tan CS (2008) Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon Soil Till Res 100:120-124. Yang XM, Kay BD (2001) Impacts of tillage practices on total, loose- and occluded-particulate, and humified organic carbon fractions in soils within a field in southern Ontario. Can J Soil Sci 81:149-156. Yang XM, Wander MM (1999) Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois. Soil Till Res 52:1-9.

Recommended publications