Colorado's "Lost" Radium Boom: Early 20Th Century Mining and Processing Landscapes on the Colorado Plateau and in Denver

Total Page:16

File Type:pdf, Size:1020Kb

Colorado's 02 Sufc^.fW) Colorado's "Lost" Radium Boom: Early 20th Century Mining and Processing Landscapes on the Colorado Plateau and in Denver By Stephen S. Hart and Eric Twitty The rural historic landscape is one of the categories of property qualifying for listing in the National Register as a historic site or district. For the purposes of the National Register, a rural historic landscape is defined as a geographical area that historically has been used by people, or shaped or modified by human activity, occupancy, or intervention, and that possesses a significant concentration, linkage, or continuity of areas of land use, vegetation, buildings and structures, roads and waterways, and natural features. Rural landscapes commonly reflect the day-to-day occupational activities of people engaged in traditional work such as mining, fishing, and various types of agriculture.1 National Park Service guidance for rural historic landscapes states that these landscapes may include:2 • Industry (including mining and milling) • Transportation systems The guidance also states that: Mining properties may include not only the most prominent mining structures, but also the communities shaped as a result of the mining activity and the surrounding land covered by related mining claims, and containing historic shafts, tunnels, pits, and tailings. The Multiple Property Listing for uranium mining in Montrose and San Miguel Counties in far western Colorado, stated:3 Concise areas in western Montrose and San Miguel counties that experienced uranium mining certainly fit the definition. Groups of individual resources such as mines, millsites, and mining camps will constitute most uranium mining landscapes. The specific type of uranium mining landscape will then be defined by the dominant or most numerous resources. Also identified in the MPL were six Periods of Significance, based on the MPS Guidance. Only the first two Periods of Significance—1898-1905 and 1906-1923—are applicable to the Colorado Radium Boom. During these two periods, uranium ore was mined in southwestern Colorado and processed in Denver primarily for its radium content because there were very few uses for uranium during the early 20th century (Tables 1 and 2). The Origins of the Colorado Radium Boom In 1898, Mme. Marie Curie isolated radium from Austrian pitchblende ore. During that same year, samples of yellow ore sent from Montrose, Colorado, to France for analysis by French chemists. The ore was identified as radioactive and containing uranium and vanadium. The French named the ore "carnotite" after French Inspector of Mines Adolphe Carnot, brother of the French president. Research before the turn of the century indicated that radium could be used in the treatment of cancer.5 From 1898 to 1916, radium was used for cancer treatment, not military purposes. In 1900, the Rare Metals Mining and Milling Company opened offices at 3227 Champa Street in Denver and opened America's first uranium extraction plant near Naturita (Figure l).6 The company was succeeded by the Western Refining Company in 1903, the Dolores Refining 1 Company in 1904, and the American Rare Metals Company in 1908, but its success drew attention to the huge deposits of carnotite on the Colorado Plateau. The Bureau of Mines Denver Experiment Station The second experiment station, after Pittsburgh, established by the U. S. Bureau of Mines was in Denver in 1910.7 Although the emphasis in Pittsburgh was on coal mine safety, the purpose of the Denver Station was the investigation of rare metals, including uranium, radium, vanadium, thorium, tungsten, molybdenum, nickel, and manganese. Included in this charter was research into the mining, concentration, extraction, and chemical problems associated with low- grade ores. This laboratory was first established in the Foster Building at 910 16th Street in downtown Denver, which was until recently owned by the University of Denver (the University Building).8 In early 1912, only two years after its establishment, the Denver Station determined that large quantities of carnotite and pitchblende, two ores of uranium and radium, were being exported to European countries for the extraction of radium. The Bureau of Mines was concerned with this exportation due to the discrepancy between the price paid for the carnotite ($80 per ton) and that for radium ($120,000 per gram). Also of concern was the small quantity of radium available in the known uranium reserves (1 part in 200 million) of the Colorado Plateau, the largest uranium deposit in the world at that time.9 If Joachimsthal, Austria, pitchblende supplies were cut off by a European war, the Bureau realized that American and western European radium demand could only be supplied through rapid development of the Colorado Plateau ores.10 The Radium Boom on the Colorado Plateau The Colorado Plateau contained most of the uranium and vanadium resources of the United States. However, due to lack of processing capability in the U.S., most of the carnotite produced from western Colorado between 1900 and 1912 was sent to Europe for the extraction of radium and vanadium from the ore. In addition, ore transportation by pack train and wagon over 60 miles of poor road that separated the mines and mills from the nearest rail head—the narrow- gauge Rio Grande Southern's depot at Placerville—nearly doubled the cost of the milled ore and considerably impacted the profitability of the carnotite industry during this period (Figure 2).11 During 1911, Standard Chemical Company of Pennsylvania acquired a large tract of the Club Ranch on the San Miguel River and built an experimental mill, a laboratory, a boardinghouse, and a small tent colony for workers (Figure 3). The company named the complex Joe Jr. Camp after the company president's son. When the mill confirmed an effective process, Standard moved quickly to build a full-scale facility at the camp. By the middle of 1914, the Standard Chemical Mill began treating local carnotite while encouraging mining outfits to send overflow ore directly to the refinery in Pennsylvania.12 However, for independent mining outfits, the impact of local mills was not as grand as expected. The reason was that the milling companies also had their own mines and treated the ore in-house. When Standard Chemical was building its experimental mills, they purchased around 300 claims, and, by 1913, the company amassed around 1,100 acres in Montrose County. Similarly, the Radium Company aggressively acquired mines to supply enough ore to keep its refinery busy. American Rare Metals owned several mines on Disappointment Creek, and the Schlesinger Radium Company bought the Rajah Mine on Roc Creek to supply its Denver refinery.13 Overall, the Federal Government's machinations, the Bureau of Mines' efforts, and the 2 advances made by the private sector brought the slow and steady growth into a small boom. Ore production almost doubled from 2,270 tons in 1913 to 4,300 tons during 1914, and nearly all of this came from the Paradox Valley area. The increase in both production and interest in radium and vanadium prompted records-keepers to state:14 The year 1914 was an eventful one in the industry of mining ores of radium, uranium, and vanadium, and showed by far the largest annual output yet made, amounting to 4,294 short tons of dry ore carrying 87.2 tons of uranium oxide, and 22.3 grams of metallic radium. When the U.S entered World War I, carnotite enjoyed a demand that was heavier than ever (Figure 4). This time, however, the roles of the metal constituents were reversed. In the past, companies produced carnotite for its radium and considered the vanadium as an afterthought. By 1917, the large companies refitted their mills to recover vanadium first and radium only as a byproduct. In so doing, the companies found carnotite to be highly profitable because the ore featured four times more vanadium than uranium. Repeating the pattern of the past carnotite excitements, the World War I boom provided opportunities for both large companies and independent parties.15 The National Radium Institute No federal government funds being available in 1913 for development of Colorado Plateau camotitie resources, the Bureau of Mines determined that a cooperative agreement with a private medical group could provide funding, while the Bureau could provide technical support. The organization formed through this agreement was called the National Radium Institute. On October 13, 1913, the Bureau of Mines approved the agreement with Dr. Howard Kelly of Baltimore and Dr. James Douglas of New York City to expend $150,000 by August 30, 1916, to form the National Radium Institute for the purposes of:16 1. Mining "camotite or other suitable ores, to an amount of 1000 tons, more or less, of high- grade (over 2 per cent)," 2. Establishing and operating "a plant for the working up of said ores," 3. Erecting and operating "a small concentration plant for the treatment of any low-grade ore," 4. Extracting at least "7 grams of anhydrous radium bromide from any 1,000 tons of camotite ore" for medical research." For a 15-percent royalty, the Crucible Steel Company agreed to lease the Institute 16 camotite claims in Long Park, located in the Paradox Basin, 16 miles west of Naturita and 58 miles from the RGS railroad line at Placerville. In order to prevent hauling raw ore nearly 60 miles by wagon, a 10-ton per day concentrating mill was constructed at Long Park in 1915.17 During a year of operation, this mill produced 298 tons of 2.92% U308 for the Institute. Denver was selected as the location for the radium processing plant of the Institute and construction began during the "Big Snow" winter of 1913-1914 at 457 South Elati. Regular production of radium began in June 1914, with 100 tons of camotite ore purchased by the Institute from private suppliers.
Recommended publications
  • Paradox Valley Petroglyph Tour
    PARADOX VALLEY PETROGLYPH TOUR PROMOTES AWARENESS, UNDERSTANDING, APPRECIATION, and PRESERVATION of our area’s PAST and PRESENT. MUSEUM & OFFICE LOCATED ON THE SCENIC & HISTORIC UNAWEEP‐TABEGUACHE BYWAY Naturita, Colorado (970)865‐2100 rimrocker.org [email protected] ONE HUNDRED & FIFTY MILLION YEARS OF HISTORY The Rimrocks of Western Montrose County are rich with history. One hundred and fiy million years ago, this landscape included dinosaurs and lush plants that were eventually deposited NUCLA NATURITA AREA CHAMBER OF COMMERCE in sandstone beds that now define the Morri- UNAWEEP-TABEGUACHE HISTORIC & SCENIC BYWAY son Formaon. Its massive rock outcroppings of INTERPRETIVE VISITOR CENTER red and gray sandstone provided an excellent HIGHWAY 141 NATURITA, COLORDO medium for the early inhabitants of this area to tell their stories. nucla‐naturita.com (970)865‐2350 These rock etchings, although their content PRESENTED BY:: may seem primive and unfamiliar, beckon us Working together for the betterment and RIMROCKER to search for the common themes that connect the development of the West End. HISTORICAL SOCIETY all of humanity throughout the ages. In doing OF WESTERN MONTROSE COUNTY so, we can understand the powerful human NUCLA NATURITA AREA need to define our place and purpose on this Thank you for supporting our local businesses. CHAMBER OF COMMERCE earth, and to ensure that our lives do not go UNAWEEP-TABEGUACHE un-remembered. © Rimrocker Historical Society, 2016 HISTORIC & SCENIC BYWAY INTERPRETIVE CENTER Other area tours you may enjoy: Highway 141 auto tour, Paradox Valley & Dolores River Canyon offers hiking PARADOX VALLEY PETROGLYPH TOUR and driving routes, Hanging Flume Tour, Long Park Mine auto tour, Wild Horses of Disappointment Valley, Petroglyph comes from 2 Greek The Tour will involve driving on 2-track dirt roads Shaman words: petro- rock, and glyph- that require a high clearance vehicle.
    [Show full text]
  • RUNNING El Rio De Nuestra Señora De Dolores in May 1956
    RUNNING El Rio de Nuestra Señora de Dolores in May 1956 by Black George 12 March, 2007 Despite its transitory character, boating was undoubtedly attempted on the Dolores River, but no significant record of early navigation is known. Thus, the first trip to be described which might benefit future travelers took place a mere 60 years ago. In 1948, Preston "Pres" Walker (editor of the Grand Junction Daily Sentinel), and Pres's wife Becky plus their dog, Ditty, and Otis "Dock" Marston (Colorado River Historian), and his wife, Margaret, traversed the river for 207 miles from near the town of Dolores to the river's junction with the Colorado River, and continued 35 more miles on high fast water to "Matrimony Spring" near Moab, Utah. Pres and Dock rowed a Nevills San Juan type of boat (punt), a wooden craft tapered toward bow and stem, and blunt at both extremities. The group departed from a bridge about a mile downstream from the town of Dolores on May 15 and reached Gateway, Colorado, on May 20. Then, after a two day layover including a trip to Grand Junction, they embarked at Gateway on May 23 and reached the Colorado River and Moab, Utah, on May 25. Walker's account, accompanied by 11 photographs, was published in the Daily Sentinel shortly after the trip (Walker, 1948), and Marston's account, a copy of his diary, was published a year later in Colorado Magazine, (Marston, 1949). First Trip 05 May, 1956 Dove Creek pumping station (Mile 19.1) to Mouth of Disappointment Creek (Mile 43.2) 23.2 miles Bob Gant and George Simmons Our first impression was, "The water's cold!" We had no more than pumped our boats and launched them, than they felt soft again, and we had to thoroughly top them off before they were rigid enough to be rowed effectively.
    [Show full text]
  • Open-File Report USGS-4339-6 1973 GEOLOGICAL SURVEY Federal
    Open-file report USGS-4339-6 1973 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal Center, Denver, Colorado 80225 GEOLOGIC APPRAISAL OF PARADOX BASIN SALT DEPOSITS FOR WASTE EMPLACEMENT by Robert J. Hite and S. W. Lohman Open-file report 1973 Prepared under Agreement No. AT(40-1)-4339 for the Division of Waste Management and Transportation U.S. Atomic Energy Commission and under Order No. 1318, Amendment No. 1 for the Defense Advanced Research Projects Agency Department of Defense This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards or nomenclature. CONTENTS Page Abstract : 1 Introduction r - 3 Drainage and water supply- .~--. - . .- - , 7 Stratigraphy, and hydrology- - :r---:- ' - .-- 8 General statement , 8 Pre-Paradox rocks - . - 12 Paradox Member--- ---- - -------- ... - - -_.-. - 14 Evaporite cycles-------- -- -- ----- ------- -- 15 Anhydrite rock -- - - 19 Dolomite rock - - - 19 Halite rock - 19 Black shale 20 Post-Paradox rocks -- - 21 Structure 23 Salt anticlines 24 Geologic persistence of Paradox salt deposits - 37 Gas in the Paradox Member 42 Geology of specific sites - - 44 General statement 44 Castle Valley anticline 44 Fisher Valley anticline 46 Gibson dome- 47 Gypsum Valley anticline . 49 CONTENTS Continued Page Geology of specific sites Continued Lisbon Valley anticline- - --- 50 Lockhart anticline and Rustler dome--- 52 Moab-Spanish Valley-Pine Ridge anticline- 53 -., ,! v Paradox Valley anticline ---- . 57 Salt Valley anticline 58 Shafer dome---- - ----------- --_-__-. 62 Sinbad Valley anticline - --- - 66 Summary- 70 References 72 ii ILLUSTRATIONS ; Page Figure 1. Index map of Paradox^hasin- / '-. 5 2. Generalized stratigraphic-chart-of northeastern . Paradox basin*: : . < ; .-- 10 *3. : Stratigraphic section through the Pennsylvanian (in system in, the Paradox basin pocket) 4.
    [Show full text]
  • Paleofluid Flow in the Paradox Basin: Introduction
    ©2018 Society of Economic Geologists, Inc. Guidebook Series, Volume 59 Paleofluid Flow in the Paradox Basin: Introduction Mark D. Barton,1,† Isabel F. Barton,2 and Jon P. Thorson3 1Lowell Institute for Mineral Resources and Department of Geosciences, University of Arizona, Tucson, Arizona 85721 2Department of Mining and Geological Engineering, University of Arizona, Tucson, Arizona 85721 3Consulting Geologist, 3611 South Xenia Street, Denver, Colorado 80237 Abstract This field trip focuses on several of the classic Cu and U(-V) ore systems of the Colorado Plateau in the context of diverse geologic environments, processes, and consequences of fluid flow of the Paradox Basin. The Paradox Basin contains a >300-m.y. history of fluid flow and resource generation. Late Paleozoic development of a K-rich evaporitic foreland basin created a setting upon which later fluid-dominated processes generated economically significant accumulations of hydrocarbons, K-rich brines, CO2, and— most notably—metals including, significant deposits of Cu and some of the largest U and V resources of the United States. The sourcing and movement of fluids of diverse types and the resulting multiplicity of metasomatic features reflect a complex history starting with salt movement beginning in the Permian, sedimentation continuing intermittently into the Paleogene, distal manifestations of Cretaceous to Paleocene orogenesis, Cenozoic magmatism and, most recently, Neogene exhumation. In light of this broader context, we will examine Cu(-Ag) systems associated with salt anticlines at Paradox Valley (Cashin mine) and Lisbon Valley (Lisbon Valley mine), superimposed modern and ancient systems at Sinbad Valley, and contrasting U-V systems in the Jurassic Morrison Formation at Monogram Mesa (Uravan district) and Triassic Chinle Formation at Lisbon Valley (Big Indian district).
    [Show full text]
  • NMGS 32Nd Field Conference
    West Elk Breccia volcaniclastic facies in amphitheatre on north side of Mill Creek Canyon, West Elk volcanic field. Courtesy D. L. Gas kill, U.S. Geological Survey. "The hills west of Ohio Creek are composed mainly of breccia . eroded in the most fantastic fashion. The breccia is stratified, and there are huge castle-like forms, abrupt walls, spires, and towers." A. C. Peale, Hayden Survey, 1876 Editors RUDY C. EPIS and ONATHA ALLE.NDER Managing Editor JONATHAN F. CALLENDER A 44. iv CONTENTS Presidents Message vi Editors Message vi Committees vii Field Conference Schedule viii Field Trip Routes ix LANDSAT Photograph of Conference Area ROAD LOGS First Day: Road Log from Grand Junction to Whitewater, Unaweep Canyon, Uravan, Paradox Valley, La Sal, Arches National Park, and Return to Grand Junction via Crescent Junction, Utah C. M. Molenaar, L. C. Craig, W. L. Chenoweth, and I. A. Campbell 1 Second Day: Road Log from Grand Junction to Glenwood Canyon and Return to Grand Junction R. G. Young, C. W. Keighin and I. A. Campbell 17 Third Day: Road Log from Grand Junction to Crested Butte via Delta, Montrose and Gunnison C. S. Goodknight, R. D. Cole, R. A. Crawley, B. Bartleson and D. Gaskill 29 Supplemental Road Log No. 1: Montrose to Durango, Colorado K. Lee, R. C. Epis, D. L. Baars, D. H. Knepper and R. M. Summer 48 Supplemental Road Log No. 2: Gunnison to Saguache, Colorado R. C. Epis 64 ARTICLES Stratigraphy and Tectonics Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico M. E. MacLachlan 75 Summary of Paleozoic Stratigraphy and History of Western Colorado and Eastern Utah John A.
    [Show full text]
  • THE PARADOX VALLEY UNIT a Significant Component of the Colorado River Basin Salinity Control Program
    THE PARADOX VALLEY UNIT A significant component of the Colorado River Basin Salinity Control Program SUMMARY The Paradox Valley Unit (PVU), a series of brine collection wells and a deep injection disposal well, is a critical component of the Colorado River Basin Salinity Control Program (Program). The PVU prevents approximately 100,000 tons of salt from entering the waters of the Colorado River Basin each year, providing just under 10 percent of the total salinity control implemented in the Colorado River Basin. It is estimated that the PVU’s injection well could have as few as three to five years of operating life left due to increasing wellhead pressure. Additionally, injection-induced seismic events could further shorten the operational life of the PVU injection well. Failure of the existing PVU is projected to increase salinity levels in the Colorado River by 9-10 mg/L at Hoover Dam during periods of average hydrology and could be as high as 15 mg/L during drought conditions. This would increase economic damages to agricultural, municipal, and industrial entities by approximately $24 million annually during average hydrology. Failure of the PVU would also increase the likelihood of exceeding water quality standards. Even if there is not “failure” of the injection well, concerns with induced seismicity have led to reductions in the effectiveness of the project. The Bureau of Reclamation (Reclamation) is currently working on an Environmental Impact Statement (EIS) that evaluates long-term solutions to the current PVU. Unfortunately, under the current NEPA schedule, the final Finding of No Significant Impact (FONSI) or Record of Decision (ROD) will not be published until 2018.
    [Show full text]
  • Zoning of the Bitter Creek Vanadium-Uranium Deposit Near Uravan Colorado
    Zoning of the Bitter Creek Vanadium-Uranium Deposit Near Uravan Colorado GEOLOGICAL SURVEY BULLETIN 1042-F This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission CONTRIBUTIONS TO ECONOMIC GEOLOGY ZONING OF THE BITTER CREEK VANADIUM-URANIUM DEPOSIT NEAR URAVAN, COLORADO By ALLEN V. HEYL ABSTRACT The vanadium and uranium deposit of the Bitter Creek mine south of Uravan, Colo., is in the upper part of the Salt Wash sandstone member of the Morrison formation. The deposit is divided into three zones, each having distinctive geologic features. The zones merge, the first into the second and the second Into the third, as the thickness of cover on the ore bodies increases. The deepest zone contains nodular and concretionary masses of vanadium-uranium oxides associated with pyrite and chalcopyrite. These masses grade into disseminated deposits of vanadiferous clays and carnotite nearer the outcrop. Similar but less distinctive zones are exposed in many other mines in the Uravan district. The zones represent progressive oxidation of older primary (?) concretionary vanadium-uranium oxide deposits that contained iron and copper sulfides. INTRODUCTION The Bitter Creek vanadium and uranium mine (fig. 28) is in the eastern part of the carnotite-producing "Uravan mineral belt" (Fischer and Hilpert, 1952, pi. 1) in Mesa, Montrose, and San Miguel Counties, Colo., and adjacent parts of Utah. The mine is about 6 miles south of Uravan, Colo., in the SW.%SW% sec. 1, T. 46 N., K. 17 W., Montrose County (Fischer, 1944). It is reached by an unpaved road from Uravan that leads through Long Park and by a similar road from Colorado Koute 90 in Paradox Valley.
    [Show full text]
  • COLORADO MAGAZINE Published Bi-Monthly by the State H Istorical Society of Colorado
    THE COLORADO MAGAZINE Published bi-monthly by The State H istorical Society of Colorado VOL. IX Denver, Co lo rado, J a nuary, 1932 N o. 1 The Archaeological Survey of Paradox Valley and Adjacent Country in Western Montrose County, Colorado, 1931 G. AN"D E. \VoonnuRY The State Historical Society of Colorado, wiih the assistance of the Smithsonian Institution of Washington, D. C., made an archaeological surve:v of western Montrose County, Colorado, during the summer season of 193]. This report is made to both institutions simultaneously describing thr scope of the work un­ drrtaken and the nature of the sites of archaeological interest discovered in that section. At the end of the 1924 expedition of the State IIistorical Society of Colorado, J eancon and Roberts had reached Paradox Valley in their survey of western Colorado. Lack of time pre­ vented an exhaustive treatment of this area. Since this section of western Colorado lies on the periphery of our present knowl­ edge regarding the distribution of prehistoric sedentary tribes in the state, it was thought advisable to begin this season's work at the point where the 1924 expedition terminated-namely, witl1 Paradox Valley. Permits were kindly g-ranted by the United States Departments of Agriculture arn1· Tntrrior to work upon g-overnment land in this region. vV e wish to take this opportunity to express our thanks to the many individuals who so kindly assisted us and furthered the progress of this survey. We wish to express our appreciation to .Jean Allard Jeancon for putting at our disposal his field notes of the 1924 expedition.
    [Show full text]
  • Carnotite K2(UO2)2(V2O8) • 1−3H2O C 2001-2005 Mineral Data Publishing, Version 1
    Carnotite K2(UO2)2(V2O8) • 1−3H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Rarely in crystals, with a diamond-shaped outline, to 2 mm, flattened on {001}; typically in fine aggregates or powdery; disseminated, compact massive. Twinning: On {001} as both twin and composition plane. Physical Properties: Cleavage: Perfect on {001}, micaceous. Hardness = Soft. D(meas.) = 4.70 D(calc.) = 4.91 Radioactive. Optical Properties: Semitransparent. Color: Bright yellow to lemon-yellow, may be greenish yellow. Streak: Strontian-yellow. Luster: Dull, earthy; silky when crystalline. Optical Class: Biaxial (–). Pleochroism: X = nearly colorless to pale grayish yellow; Y = Z = canary-yellow to lemon-yellow. Orientation: X = c; Y = b; Z ∧ a ' 14◦. Dispersion: r< v. α = 1.750 β = 1.925 γ = 1.950 2V(meas.) = 40◦–50◦ Cell Data: Space Group: P 21/a (anhydrous synthetic). a = 10.47(2) b = 8.41(1) c = 6.91(1) β = 103◦50(5)0 Z=2 X-ray Powder Pattern: Olary, Australia. 6.56 (10), 3.12 (7), 3.53 (5), 4.25 (3), 3.25 (3), 2.156 (3), 2.571 (2) Chemistry: (1) (2) (1) (2) UO3 62.26 63.41 CaO 0.66 SO2 0.26 Na2O 0.16 V2O5 20.57 20.16 K2O 10.00 10.44 Fe2O3 0.55 H2O 4.90 5.99 CuO 0.07 insol. 0.04 MgO 0.30 Total 99.77 100.00 • (1) Temple Mountain, Utah, USA. (2) K2(UO2)2(V2O8) 3H2O. Occurrence: An important ore mineral of uranium, typically in paleochannels in sandstone Colorado Plateau-type U–V deposits, found near fossil carbonaceous matter, and in calcretes and near playas; an alteration product of uraninite, montroseite, or davidite.
    [Show full text]
  • Final Remedial Investigation Report, Uravan Uranium Superfund Site. Report and Figures
    Final Remedial Investigation Report Uravan Uranium Project (Union Carbide) Superfund Site Uravan, Colorado EPA Contract No. EP-W-05-049 Work Assignment No: 354-TATA-0846 Prepared by: CDM Federal Programs Corporation October 2017 CDMlhSm1 RESPONSE ACTION CONTRACT FOR REMEDIAL, ENFORCEMENT OVERSIGHT, AND NON-TIME CRITICAL REMOVAL ACTIVITIES AT SITES OF RELEASE OR THREATENED RELEASE OF HAZARDOUS SUBSTANCES IN EPA REGION VIII U. S. EPA CONTRACT NO. EP-W-05-049 FINAL REMEDIAL INVESTIGATION REPORT Uravan Uranium Project (Union Carbide) Uravan, Colorado Work Assignment No.: 354-TATA-0846 October 2017 Prepared for: U. S. ENVIRONMENTAL PROTECTION AGENCY Region VIII 1595 Wynkoop Street Denver, Colorado 80202-1129 Prepared by: CDM FEDERAL PROGRAMS CORPORATION 555 17th Street, Suite 500 Denver, Colorado 80202 Table of Contents Section 1 Introduction ....................................................................................................... 1-1 1.1 Purpose and Approach ........................................................................................................................................... 1-1 1.2 Site Background and Regulatory Framework .............................................................................................. 1-1 1.3 Report Organization ................................................................................................................................................ 1-3 Section 2 Site Physical Characteristics...............................................................................
    [Show full text]
  • Geology of the Naturita Nw Quadrangle, Colorado*
    w,P30 ( J RESOURCE COMPILATJor s 1., no nr (J~J \A.t~ G E 0 L 0 G Y 0 F T H E N A TURITA N W Q U A DR A N G L E, COLORADO By Fred W. Cater, Jr., with a section on "The Mines" by J. D. Vogel Trace Elements Memorandum Report 702 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOG I CAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AEC - 471/4 FEB 1 71954 Dr. Phillip L. Merritt, Assistant Director Division of Raw Materials U, So Atomic Energy Commission P~ Oo Box 30, Ansonia Station New York 23, New York Dear Phil; Transmitted herewith is one copy of TEM-702, 11 Geology of the Naturita NW quadrangle, Colorado,11 by,Fred W~ Cater, Jr., with a section on "The Mines'1 by J. D. Vogel, November 1953. On November 27, 1953, Mr. Hosted approved our plan to publish this report in the Quadrangle Map Series. Sincerely yours, ~~.Jt~.,.~~ r.,-# . Cn_ W. H. Bradley 7 . Chief Geologist lfE B 1 2.tlM I Geol6gy and Mineralogy This docU111ent consists of 27 pages, plus 1 figure. Series A 'UJNILTEJD~ STATE.S;:DEPARTM ENT OF THE INTERIOR GEOLOGICAL SURVEY GEOLOGY OF THE NATURITA NW QUADRANGLE, COLORADO* By with' a section on "The Mines" ·...... .' l; byJ J. : P. .·./N.ogel November 1953 Trace Elements Memorandum Report 702 This preliminary report is dis­ tributed without editorial and technical review for conformity with official standards and no­ menclature.
    [Show full text]
  • Review of Geologic Investigations and Injection Well Site Selection, Paradox Valley Unit, Colorado
    Technical Memorandum No. 86-68330-2012-27 Review of Geologic Investigations and Injection Well Site Selection, Paradox Valley Unit, Colorado U.S. Department of the Interior Bureau of Reclamation Technical Service Center November 2012 Mission Statements The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Review of Geologic Investigations and Injection Well Site Selection, Paradox Valley Unit, Colorado TABLE OF CONTENTS 1.0 Introduction............................................................................................................................... 1 2.0 Project Background................................................................................................................... 3 2.1 Paradox Valley Unit...................................................................................................... 3 2.2 Feasibility Studies......................................................................................................... 3 2.3 PVU Injection History .................................................................................................. 5 2.3.1 Phase I (July 22, 1996 - July 25, 1999) .......................................................
    [Show full text]