The Inverse Function of an Exponential Function Is the Logarithmic Function
Total Page:16
File Type:pdf, Size:1020Kb
Logarithmic Functions
f x logb x The inverse function of an exponential function is the ______. For all positive real numbers x and b, b>0 and b 1, ______if and only if______. The domain of the logarithmic function is ______ The range of the function is ______
Since the log function is the inverse of the exponential function, their graphs are symmetric with respect to ______.
** Remember that since the log function is the inverse of the exponential function, we can simply swap ______of our important points. y=x x x y b y logb x y 2 __x__y__ __x__y_ -1 1/b 0 1 1 b
y log x y log2 x 2 __x___y__ -1 0 1
•Logarithmic Functions where b 1 are ______, ______functions. •Logarithmic Functions where 0b 1 are ______, ______functions. •The parent form of the graph has an x-intercept at _____ and passes through ______and ______. •There is a vertical asymptote at ______. •The value of _____ determines the ______of the curve. •The function is neither ______nor ______. There is no ______. •There is no ______. More Characteristics of f x logb x .
•The domain is ______. • The range is ______• End Behavior: ______• The x-intercept is ______• The vertical asymptote is ______• There is ______y-intercept. • There are ______horizontal asymptotes. • This is a ______, ______function. • It is concave ______.
Domain:______
Graph f x log3 x . Range: ______y log3 x x-int.: ______ 3 y x V. Asy.:______Inc./Dec.?______Concavity? ______ Important Points: End Behavior: ______
Graph y log 1 x Domain:______2 Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______
TRANSFORMATIONS
y log x 1 y2log 1 x 3 ylog x 1 2 2 2 3 ______
Domain:______Domain:______Domain:______Range: ______Range: ______Range: ______x-int.: ______x-int.: ______x-int.: ______V. Asy.:______V. Asy.:______V. Asy.:______Inc./Dec.?______Inc./Dec.?______Inc./Dec.?______Concavity? ______Concavity? ______Concavity? ______End Behavior: ______End Behavior: ______End Behavior: ______
More Transformations
h x logb ax c
The asymptote of a logarithmic function of this form is the line______. To find an x-intercept in the form, let y=0 in the equation______. To find a y-intercept in this form, let x=0 in the equation______.
Try with ylog3 2 x 1 ylog3 2 x 1 ______
Domain:______Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______
.
Transformations – Common Log Graph: h x log3 x 10 . ______Domain:______Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______Transformations – Natural Log
Graph: h x 2ln 4 x 8 2 ______
Domain:______Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______
Change of Base Formula log x log x b logb
Use this formula for entering logs with bases other than 10 or e in your graphing calculator.
If you wanted to graph ylog3 x 1 , you would enter ______in your calculator. Either the ______or the ______log may be used in the change of base formula. So you could also enter______in your calculator.