<p> Logarithmic Functions </p><p> f x logb x The inverse function of an exponential function is the ______. For all positive real numbers x and b, b>0 and b 1, ______if and only if______. The domain of the logarithmic function is ______ The range of the function is ______</p><p> Since the log function is the inverse of the exponential function, their graphs are symmetric with respect to ______.</p><p>** Remember that since the log function is the inverse of the exponential function, we can simply swap ______of our important points. y=x x x y b y logb x y 2 __x__y__ __x__y_ -1 1/b 0 1 1 b</p><p> y log x y log2 x 2 __x___y__ -1 0 1</p><p>•Logarithmic Functions where b 1 are ______, ______functions. •Logarithmic Functions where 0b 1 are ______, ______functions. •The parent form of the graph has an x-intercept at _____ and passes through ______and ______. •There is a vertical asymptote at ______. •The value of _____ determines the ______of the curve. •The function is neither ______nor ______. There is no ______. •There is no ______. More Characteristics of f x logb x .</p><p>•The domain is ______. • The range is ______• End Behavior: ______• The x-intercept is ______• The vertical asymptote is ______• There is ______y-intercept. • There are ______horizontal asymptotes. • This is a ______, ______function. • It is concave ______.</p><p>Domain:______</p><p> Graph f x log3 x . Range: ______y log3 x x-int.: ______ 3 y x V. Asy.:______Inc./Dec.?______Concavity? ______ Important Points: End Behavior: ______</p><p> Graph y log 1 x Domain:______2 Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______</p><p>TRANSFORMATIONS</p><p> y log x 1 y2log 1 x 3 ylog x 1 2 2 2 3 ______</p><p>Domain:______Domain:______Domain:______Range: ______Range: ______Range: ______x-int.: ______x-int.: ______x-int.: ______V. Asy.:______V. Asy.:______V. Asy.:______Inc./Dec.?______Inc./Dec.?______Inc./Dec.?______Concavity? ______Concavity? ______Concavity? ______End Behavior: ______End Behavior: ______End Behavior: ______</p><p>More Transformations</p><p> h x logb ax c</p><p>The asymptote of a logarithmic function of this form is the line______. To find an x-intercept in the form, let y=0 in the equation______. To find a y-intercept in this form, let x=0 in the equation______.</p><p>Try with ylog3 2 x 1 ylog3 2 x 1 ______</p><p>Domain:______Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______</p><p>.</p><p>Transformations – Common Log Graph: h x log3 x 10 . ______Domain:______Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______Transformations – Natural Log</p><p>Graph: h x 2ln 4 x 8 2 ______</p><p>Domain:______Range: ______x-int.: ______V. Asy.:______Inc./Dec.?______Concavity? ______End Behavior: ______</p><p>Change of Base Formula log x log x b logb</p><p>Use this formula for entering logs with bases other than 10 or e in your graphing calculator.</p><p>If you wanted to graph ylog3 x 1 , you would enter ______in your calculator. Either the ______or the ______log may be used in the change of base formula. So you could also enter______in your calculator.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-