Hanford High School, Richland, Washington Revised 3/8/06
Total Page:16
File Type:pdf, Size:1020Kb
A.P. Calculus BC Formulas 2005-2006 Hanford High School, Richland, Washington revised 3/8/06
1. floor function (def) Greatest integer that is less than or equal to x.
2. x (graph)
3. ceiling function (def) Least integer that is greater than or equal to x.
4. x (graph)
2 2 5. a3 b3 ba bgca ab b h
2 2 6. a3 b 3 ba bgca ab b h
1 of 11 Hanford High School Calculus Richland, Washington 1 7. f (x) (graph) x
3
2
1
-3 -2 -1 0 1 2 3 x -1
-2
-3
ln x 8. p34 Change of base rule for logs: log x a ln a
2 2 9. Circle formula: x h y k r 2
2 10. Parabola formula: ( x- h) =4 p( y - k )
x2 y2 11. Ellipse formula: 1 c a2 b2 a2 b2
x2 y2 12. Hyperbola formula: 1 c a2 b2 a2 b2
c 13. eccentricity: e a
14. sin2 x cos2 x 1
15. 1 tan2 x sec2 x
16. 1 cot 2 x csc2 x
17. sinbu vg sinucosv cosusinv
18. cosbu vg cosucosv ∓sinusinv
tan u tanv 19. tan u v b g 1∓tanu tanv
2 of 11 Hanford High School Calculus Richland, Washington 20. sin(2u) 2sinucosu
21. cos(2u) cos2 u sin2 u
2 tan u 22. tan(2u) 1 tan2 u
1 cos2u 23. sin2 u 2
1 cos2u 24. cos2 u 2
1 cos2u 25. tan2 u 1 cos2u
1 26. sinusin v cos u v cos u v 2 b g b g
1 27. cosucosv cos u v cos u v 2 b g b g
1 28. sinucosv sin u v sin u v 2 b g b g
1 29. cosusinv sin u v sin u v 2 b g b g
a b c 30. p581 law of sines: sin A sin B sinC
31. p581 law of cosines: c2 a 2 b 2 2 ab cos C
1 32. p581 area of triangle using trig. Area ac sin B 2
x2 y 2 33. p27 parameterization of ellipse: 1 becomes x a cos t , y b sin t a2 b 2
sin x 34. p57 lim 1 x0 x
3 of 11 Hanford High School Calculus Richland, Washington sin x 35. p67 lim 0 x x
36. p79 Intermediate Value Theorem If a function is continuous between a and b , then it takes on every value between f (a) and f (b) .
f (x h) f (x) 37. p95 definition of derivative f (x) lim h0 h
d 38. p112 (c) 0 dx
d 39. x 1 dx bg
d 40. p113 cu cu dx bg
d n 41. u nun1u dx
d 42. p114 u v u v dx b g
d 43. p115 (uv) uv vu dx
d u vu uv FI 44. p117 GJ 2 dx HvK v
d 45. p135 sinu cosuu dx
d 46. p136 cosu sinuu dx
d 47. p138 tanu sec2 uu dx
d 48. p138 cot u csc2 uu dx
4 of 11 Hanford High School Calculus Richland, Washington d 49. p138 secu secu tanuu dx
d 50. p138 cscu cscucot uu dx
dy dy 51. p144 slope of parametrized curve: dt dx dx dt
df 1 1 52. p157 derivative formula for inverses df dx x f (a)
dx xa
d u 53. p159 sin1 u dx 1 u2
d u 54. cos1 u dx 1 u2
d u 55. p159 tan1 u dx 1 u2
d u 56. cot-1 u dx 1 u2
d u 57. p160 sec-1 u u 1 dx u u 2 1
d u 58. csc-1 u u 1 dx u u 2 1
59. p161 cot 1(x) tan1 x 2
1 1F1I 60. p161 sec (x) cos GJ HxK
1 1F1I 61. p161 csc (x) sin GJ HxK 5 of 11 Hanford High School Calculus Richland, Washington d u 62. p164 e euu dx
d 1 63. p166 ln u u dx u
d u 64. a au lna u dx
65. p178 Extreme Value Theorem If f is continuous over a closed interval, then f has a maximum and minimum value over that interval.
66. p186 Mean Value Theorem If f (x) is a differentiable function over a,b , (for derivatives) then at some point between a and b : f (b) f (a) f (c) b a
67. p221 linearization formula L(x) f (a) f (a) (x a)
f bxn g 68. p223 Newton’s Method xn1 xn f bxn g
69. p269 k f u du k f u du 70. p269 zf (u) g(u) du zf (u)du zg(u)du
71. p272 Mean Value Theorem If f is continuous on a, b , then at some 1 b (for definite integrals) point c in a, b , f c f x dx b a a
d u 72. p277 First fundamental theorem: f( t ) dt f ( u ) u dx a
h 73. p290 Trapezoidal Rule: T y 2y 2y ...2y y 2 b0 1 2 n1 n g
h 74. p292 Simpson’s Rule: S y 4y 2y ...2y 4y y 3 b0 1 2 n2 n1 n g 6 of 11 Hanford High School Calculus Richland, Washington 75. zdu u c
n1 n u 76. p315 u du c n 1 z n 1
77. p317 sinu du cosu c
78. p317 cosu du sinu c
79. p317 sec2 u du tanu c
80. p317 csc2 u du cot u c
81. p317 secu tan u du secu c
82. p317 cscu cot u du cscu c
1 83. du ln u c zu 84. zeudu eu c
1 85. audu au c z lna
86. tanu du ln cosu c
87. cotu du ln sin u c
88. secu du ln secu tanu c
89. cscu du ln cscu cot u c
du u 90. arcsin c za2 u2 a
7 of 11 Hanford High School Calculus Richland, Washington du 1 u 91. arctan c za2 u2 a a
du 1 u 92. arcsec c zu u2 a2 a a
93. p323 Integration by parts: zudv uv zvdu 94. p323 order for choosing u in LIPET logs, inverse trig., polynomial, integration by parts: exponential, trig.
kt 95. p330 exponential change: y y0e
ln 2 96. p332 half-life k
rt 97. continuous compound interest: A(t) Aoe
dP K 98. p343 logistics differential equation: P M P dt M
M 99. p343 logistics growth model P 1 Aekt
2 b dy 100. p389 surface area about x axis (Cartesian): S2 y 1 dx a dx
2 b dy 101. p397 length of curve (Cartesian): L1 dx a dx
102. Mr. Kelly’s e-mail address: [email protected]
ln n 103. p417 lim 0 n n
104. lim n n 1 n
1 105. lim x n 1 n
8 of 11 Hanford High School Calculus Richland, Washington n 106. lim x 0 x 1 n c h
x n F I x 107. limG1 J e nH nK
xn 108. lim 0 n n!
n n(n 1) 109. k k 1 2
n n(n 1)(2n 1) 110. k 2 k 1 6
n n(n 1) 2 111. k 3 GF JI k 1 H 2 K
a 1 r n 112. partial sum of geometric series: S c h n 1 r
a 113. p459 What series? ar n1 geometric, converges to if r 1 n1 1 r
f (0) f (0) 114. p473 Maclaurin Series: P(x) f (0) f (0)x x 2 x 3 ... 2! 3!
f (a) 2 115. p475 Taylor Series: P(x) f (a) f (a)(x a) x a 2! b g f (a) 3 x a ... 3! b g
1 1 116. p477 Maclaurin Series for 1 x x 2 x 3 ... 1 x 1 x
1 1 117. p477 Maclaurin Series for 1 x x 2 x 3 ... 1 x 1 x
x 2 x 3 x 4 118. p477 Maclaurin Series for e x e x 1 x ... 2! 3! 4!
9 of 11 Hanford High School Calculus Richland, Washington x 3 x 5 x 7 119. p477 Maclaurin Series for sin x sin x x ... 3! 5! 7!
x 2 x 4 x 6 120. p477 Maclaurin Series for cos x cos x 1 ... 2! 4! 6!
x2 x3 x4 121. p477 Maclaurin Series for ln(1 x) ln(1 x) x ... 2 3 4
3 5 7 1 x x x 122. p477 Maclaurin Series for tan x : tan1(x) x ... 3 5 7
n1 f c n1 123. p482 Lagrange form of remainder R x x a n n 1 !
M n1 124. p483 Remainder Estimation Theorem Rn x x a n 1 !
1 125. p484 What series? reciprocal of factorials, converges to e n0 n!
b b b1- lim bn+ 1 126. p494 What series? bn n1g telescoping series, converges to n n1
1 p p 1 127. p497 What series? p series, converges if n1 n
1 128. p498 What series? harmonic, diverges n1 n
n1 1 129. p500 What series? b1g alternating harmonic, converges n1 n
dy d 2 y 130. p514 2nd deriv. of parametrized curve: dt dx2 dx dt
10 of 11 Hanford High School Calculus Richland, Washington 2 2 b dx dy 131. p514 length of curve (parametric): L GF JI GF JI dt za Hdt K Hdt K
2 2 b dx dy 132. p517 surface area (parametric): S 2y GF JI GF JI dt za Hdt K Hdt K
133. p532 position vector (standard form): r t f ti g t j h t k
134. p533 speed from velocity vector: speed = vbtg
velocity vector vbtg 135. p533 direction from velocity vector: direction = speed vbtg
136. p555 polar to Cartesian: x r cos , y r sin
x xo v o cos t 137. p543 trajectory equations: 1 y y vsin t gt 2 o o 2
rsin r cos 138. p560 slope of polar graph: slope at (r,) r cos r sin
139. slope of polar graph at origin: slope = tan
1 140. p562 area inside polar curve: A r 2d z 2
2 dr 141. p564 length of curve (polar): L r 2 GF JI d z Hd K
2 dr 142. p565 surface area (polar): S 2r sin r 2 GF JI d z Hd K
11 of 11 Hanford High School Calculus Richland, Washington