Hanford High School, Richland, Washington Revised 3/8/06

Hanford High School, Richland, Washington Revised 3/8/06

<p> A.P. Calculus BC Formulas 2005-2006 Hanford High School, Richland, Washington revised 3/8/06  </p><p>1. floor function (def) Greatest integer that is less than or equal to x.</p><p>2. x (graph) </p><p>3. ceiling function (def) Least integer that is greater than or equal to x.</p><p>4. x (graph)</p><p>2 2 5. a3  b3  ba  bgca  ab  b h</p><p>2 2 6. a3 b 3  ba  bgca  ab  b h</p><p>1 of 11 Hanford High School Calculus Richland, Washington 1 7. f (x)  (graph) x</p><p>3</p><p>2</p><p>1</p><p>-3 -2 -1 0 1 2 3 x -1</p><p>-2</p><p>-3</p><p> ln x 8. p34 Change of base rule for logs: log x  a ln a</p><p>2 2 9. Circle formula:  x h  y  k  r 2</p><p>2 10. Parabola formula: ( x- h) =4 p( y - k )</p><p> x2 y2 11. Ellipse formula:   1 c  a2  b2 a2 b2</p><p> x2 y2 12. Hyperbola formula:   1 c  a2  b2 a2 b2</p><p> c 13. eccentricity: e  a</p><p>14. sin2 x  cos2 x  1</p><p>15. 1 tan2 x  sec2 x</p><p>16. 1 cot 2 x  csc2 x</p><p>17. sinbu  vg sinucosv  cosusinv</p><p>18. cosbu  vg cosucosv ∓sinusinv</p><p> tan u  tanv 19. tan u  v  b g 1∓tanu tanv</p><p>2 of 11 Hanford High School Calculus Richland, Washington 20. sin(2u)  2sinucosu</p><p>21. cos(2u)  cos2 u  sin2 u</p><p>2 tan u 22. tan(2u)  1 tan2 u</p><p>1 cos2u 23. sin2 u  2</p><p>1 cos2u 24. cos2 u  2</p><p>1 cos2u 25. tan2 u  1 cos2u</p><p>1 26. sinusin v  cos u  v  cos u  v 2 b g b g</p><p>1 27. cosucosv  cos u  v  cos u  v 2 b g b g</p><p>1 28. sinucosv  sin u  v  sin u  v 2 b g b g</p><p>1 29. cosusinv  sin u  v  sin u  v 2 b g b g</p><p> a b c 30. p581 law of sines:   sin A sin B sinC</p><p>31. p581 law of cosines: c2 a 2  b 2  2 ab cos C</p><p>1 32. p581 area of triangle using trig. Area  ac sin B 2</p><p> x2 y 2 33. p27 parameterization of ellipse:  1 becomes x  a cos t , y  b sin t a2 b 2</p><p> sin x 34. p57 lim 1 x0 x</p><p>3 of 11 Hanford High School Calculus Richland, Washington sin x 35. p67 lim 0 x x</p><p>36. p79 Intermediate Value Theorem If a function is continuous between a and b , then it takes on every value between f (a) and f (b) .</p><p> f (x  h)  f (x) 37. p95 definition of derivative f (x)  lim h0 h</p><p> d 38. p112 (c)  0 dx</p><p> d 39. x  1 dx bg</p><p> d 40. p113 cu  cu dx bg</p><p> d n 41. u  nun1u dx</p><p> d 42. p114 u  v  u  v dx b g</p><p> d 43. p115 (uv)  uv  vu dx</p><p> d u vu  uv FI  44. p117 GJ 2 dx HvK v</p><p> d 45. p135 sinu  cosuu dx</p><p> d 46. p136 cosu   sinuu dx</p><p> d 47. p138 tanu  sec2 uu dx</p><p> d 48. p138 cot u   csc2 uu dx</p><p>4 of 11 Hanford High School Calculus Richland, Washington d 49. p138 secu  secu tanuu dx</p><p> d 50. p138 cscu   cscucot uu dx</p><p> dy dy 51. p144 slope of parametrized curve:  dt dx dx dt</p><p> df 1 1  52. p157 derivative formula for inverses df dx x f (a)</p><p> dx xa</p><p> d u 53. p159 sin1 u  dx 1 u2</p><p> d u 54. cos1 u  dx 1 u2</p><p> d u 55. p159 tan1 u  dx 1 u2</p><p> d u 56. cot-1 u  dx 1 u2</p><p> d u 57. p160 sec-1 u  u  1 dx u u 2 1</p><p> d u 58. csc-1 u  u  1 dx u u 2 1</p><p> 59. p161 cot 1(x)   tan1  x 2</p><p>1 1F1I 60. p161 sec (x)  cos GJ HxK</p><p>1 1F1I 61. p161 csc (x)  sin GJ HxK 5 of 11 Hanford High School Calculus Richland, Washington d u 62. p164 e  euu dx</p><p> d 1 63. p166 ln u  u dx u</p><p> d u 64. a  au lna u dx</p><p>65. p178 Extreme Value Theorem If f is continuous over a closed interval, then f has a maximum and minimum value over that interval.</p><p>66. p186 Mean Value Theorem If f (x) is a differentiable function over a,b , (for derivatives) then at some point between a and b : f (b)  f (a)  f (c) b  a</p><p>67. p221 linearization formula L(x)  f (a)  f (a)  (x  a)</p><p> f bxn g 68. p223 Newton’s Method xn1  xn  f bxn g</p><p>69. p269  k f u du  k f u du 70. p269 zf (u)  g(u) du  zf (u)du  zg(u)du</p><p>71. p272 Mean Value Theorem If f is continuous on a, b , then at some 1 b (for definite integrals) point c in a, b , f c  f x dx b a a</p><p> d u 72. p277 First fundamental theorem: f( t ) dt f ( u )  u dx a</p><p> h 73. p290 Trapezoidal Rule: T  y  2y  2y ...2y  y 2 b0 1 2 n1 n g</p><p> h 74. p292 Simpson’s Rule: S  y  4y  2y ...2y  4y  y 3 b0 1 2 n2 n1 n g 6 of 11 Hanford High School Calculus Richland, Washington 75. zdu  u  c</p><p> n1 n u 76. p315 u du   c n  1 z n 1</p><p>77. p317  sinu du   cosu  c</p><p>78. p317  cosu du  sinu  c</p><p>79. p317  sec2 u du  tanu  c</p><p>80. p317  csc2 u du  cot u  c</p><p>81. p317  secu tan u du  secu  c</p><p>82. p317  cscu cot u du   cscu  c</p><p>1 83. du  ln u  c zu 84. zeudu  eu  c</p><p>1 85. audu  au  c z lna</p><p>86.  tanu du   ln cosu  c</p><p>87.  cotu du  ln sin u  c</p><p>88.  secu du  ln secu  tanu  c</p><p>89.  cscu du   ln cscu  cot u  c</p><p> du u 90.  arcsin  c za2  u2 a</p><p>7 of 11 Hanford High School Calculus Richland, Washington du 1 u 91.  arctan  c za2  u2 a a</p><p> du 1 u 92.  arcsec  c zu u2  a2 a a</p><p>93. p323 Integration by parts: zudv  uv  zvdu 94. p323 order for choosing u in LIPET logs, inverse trig., polynomial, integration by parts: exponential, trig.</p><p> kt 95. p330 exponential change: y  y0e</p><p> ln 2 96. p332 half-life k</p><p> rt 97. continuous compound interest: A(t)  Aoe</p><p> dP K 98. p343 logistics differential equation: P M  P dt M</p><p>M 99. p343 logistics growth model P  1 Aekt</p><p>2 b dy  100. p389 surface area about x axis (Cartesian): S2 y 1    dx a dx </p><p>2 b dy  101. p397 length of curve (Cartesian): L1    dx a dx </p><p>102. Mr. Kelly’s e-mail address: [email protected]</p><p> ln n 103. p417 lim  0 n n</p><p>104. lim n n  1 n</p><p>1 105. lim x n  1 n</p><p>8 of 11 Hanford High School Calculus Richland, Washington n 106. lim x  0 x  1 n c h</p><p> x n F I x 107. limG1 J  e nH nK</p><p> xn 108. lim  0 n n!</p><p> n n(n 1) 109.  k  k 1 2</p><p> n n(n 1)(2n 1) 110.  k 2  k 1 6</p><p> n n(n 1) 2 111.  k 3  GF JI k 1 H 2 K</p><p> a 1 r n 112. partial sum of geometric series: S  c h n 1 r</p><p> a 113. p459 What series? ar n1 geometric, converges to if r  1 n1 1 r</p><p> f (0) f (0) 114. p473 Maclaurin Series: P(x)  f (0)  f (0)x  x 2  x 3 ... 2! 3!</p><p> f (a) 2 115. p475 Taylor Series: P(x)  f (a)  f (a)(x  a)  x  a  2! b g f (a) 3 x  a ... 3! b g</p><p>1 1 116. p477 Maclaurin Series for  1 x  x 2  x 3 ... 1 x 1 x</p><p>1 1 117. p477 Maclaurin Series for  1 x  x 2  x 3 ... 1 x 1 x</p><p> x 2 x 3 x 4 118. p477 Maclaurin Series for e x e x  1 x    ... 2! 3! 4!</p><p>9 of 11 Hanford High School Calculus Richland, Washington x 3 x 5 x 7 119. p477 Maclaurin Series for sin x sin x  x    ... 3! 5! 7!</p><p> x 2 x 4 x 6 120. p477 Maclaurin Series for cos x cos x  1   ... 2! 4! 6!</p><p> x2 x3 x4 121. p477 Maclaurin Series for ln(1 x) ln(1 x)  x    ... 2 3 4</p><p>3 5 7 1 x x x 122. p477 Maclaurin Series for tan  x : tan1(x)  x    ... 3 5 7</p><p>n1 f c n1 123. p482 Lagrange form of remainder R x  x  a n n 1 !</p><p>M n1 124. p483 Remainder Estimation Theorem Rn  x  x  a n 1 !</p><p> 1 125. p484 What series?  reciprocal of factorials, converges to e n0 n!</p><p></p><p> b  b b1- lim bn+ 1 126. p494 What series? bn n1g telescoping series, converges to n n1</p><p> 1 p p  1 127. p497 What series?  p series, converges if n1 n</p><p> 1 128. p498 What series?  harmonic, diverges n1 n</p><p> n1 1 129. p500 What series? b1g alternating harmonic, converges n1 n</p><p> dy d 2 y 130. p514 2nd deriv. of parametrized curve:  dt dx2 dx dt</p><p>10 of 11 Hanford High School Calculus Richland, Washington 2 2 b dx dy 131. p514 length of curve (parametric): L  GF JI  GF JI dt za Hdt K Hdt K</p><p>2 2 b dx dy 132. p517 surface area (parametric): S  2y GF JI  GF JI dt za Hdt K Hdt K</p><p>133. p532 position vector (standard form): r t  f ti  g t j  h t k</p><p>134. p533 speed from velocity vector: speed = vbtg</p><p> velocity vector vbtg 135. p533 direction from velocity vector: direction =  speed vbtg</p><p>136. p555 polar to Cartesian: x  r cos , y  r sin</p><p> x xo   v o cos  t 137. p543 trajectory equations: 1 y y  vsin  t  gt 2 o o 2</p><p> rsin  r cos 138. p560 slope of polar graph: slope at (r,)  r cos  r sin</p><p>139. slope of polar graph at origin: slope = tan</p><p> 1 140. p562 area inside polar curve: A  r 2d z 2</p><p>2  dr 141. p564 length of curve (polar): L  r 2  GF JI d z Hd K</p><p>2  dr 142. p565 surface area (polar): S  2r sin r 2  GF JI d z Hd K</p><p>11 of 11 Hanford High School Calculus Richland, Washington</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us