<p> A.P. Calculus BC Formulas 2005-2006 Hanford High School, Richland, Washington revised 3/8/06 </p><p>1. floor function (def) Greatest integer that is less than or equal to x.</p><p>2. x (graph) </p><p>3. ceiling function (def) Least integer that is greater than or equal to x.</p><p>4. x (graph)</p><p>2 2 5. a3 b3 ba bgca ab b h</p><p>2 2 6. a3 b 3 ba bgca ab b h</p><p>1 of 11 Hanford High School Calculus Richland, Washington 1 7. f (x) (graph) x</p><p>3</p><p>2</p><p>1</p><p>-3 -2 -1 0 1 2 3 x -1</p><p>-2</p><p>-3</p><p> ln x 8. p34 Change of base rule for logs: log x a ln a</p><p>2 2 9. Circle formula: x h y k r 2</p><p>2 10. Parabola formula: ( x- h) =4 p( y - k )</p><p> x2 y2 11. Ellipse formula: 1 c a2 b2 a2 b2</p><p> x2 y2 12. Hyperbola formula: 1 c a2 b2 a2 b2</p><p> c 13. eccentricity: e a</p><p>14. sin2 x cos2 x 1</p><p>15. 1 tan2 x sec2 x</p><p>16. 1 cot 2 x csc2 x</p><p>17. sinbu vg sinucosv cosusinv</p><p>18. cosbu vg cosucosv ∓sinusinv</p><p> tan u tanv 19. tan u v b g 1∓tanu tanv</p><p>2 of 11 Hanford High School Calculus Richland, Washington 20. sin(2u) 2sinucosu</p><p>21. cos(2u) cos2 u sin2 u</p><p>2 tan u 22. tan(2u) 1 tan2 u</p><p>1 cos2u 23. sin2 u 2</p><p>1 cos2u 24. cos2 u 2</p><p>1 cos2u 25. tan2 u 1 cos2u</p><p>1 26. sinusin v cos u v cos u v 2 b g b g</p><p>1 27. cosucosv cos u v cos u v 2 b g b g</p><p>1 28. sinucosv sin u v sin u v 2 b g b g</p><p>1 29. cosusinv sin u v sin u v 2 b g b g</p><p> a b c 30. p581 law of sines: sin A sin B sinC</p><p>31. p581 law of cosines: c2 a 2 b 2 2 ab cos C</p><p>1 32. p581 area of triangle using trig. Area ac sin B 2</p><p> x2 y 2 33. p27 parameterization of ellipse: 1 becomes x a cos t , y b sin t a2 b 2</p><p> sin x 34. p57 lim 1 x0 x</p><p>3 of 11 Hanford High School Calculus Richland, Washington sin x 35. p67 lim 0 x x</p><p>36. p79 Intermediate Value Theorem If a function is continuous between a and b , then it takes on every value between f (a) and f (b) .</p><p> f (x h) f (x) 37. p95 definition of derivative f (x) lim h0 h</p><p> d 38. p112 (c) 0 dx</p><p> d 39. x 1 dx bg</p><p> d 40. p113 cu cu dx bg</p><p> d n 41. u nun1u dx</p><p> d 42. p114 u v u v dx b g</p><p> d 43. p115 (uv) uv vu dx</p><p> d u vu uv FI 44. p117 GJ 2 dx HvK v</p><p> d 45. p135 sinu cosuu dx</p><p> d 46. p136 cosu sinuu dx</p><p> d 47. p138 tanu sec2 uu dx</p><p> d 48. p138 cot u csc2 uu dx</p><p>4 of 11 Hanford High School Calculus Richland, Washington d 49. p138 secu secu tanuu dx</p><p> d 50. p138 cscu cscucot uu dx</p><p> dy dy 51. p144 slope of parametrized curve: dt dx dx dt</p><p> df 1 1 52. p157 derivative formula for inverses df dx x f (a)</p><p> dx xa</p><p> d u 53. p159 sin1 u dx 1 u2</p><p> d u 54. cos1 u dx 1 u2</p><p> d u 55. p159 tan1 u dx 1 u2</p><p> d u 56. cot-1 u dx 1 u2</p><p> d u 57. p160 sec-1 u u 1 dx u u 2 1</p><p> d u 58. csc-1 u u 1 dx u u 2 1</p><p> 59. p161 cot 1(x) tan1 x 2</p><p>1 1F1I 60. p161 sec (x) cos GJ HxK</p><p>1 1F1I 61. p161 csc (x) sin GJ HxK 5 of 11 Hanford High School Calculus Richland, Washington d u 62. p164 e euu dx</p><p> d 1 63. p166 ln u u dx u</p><p> d u 64. a au lna u dx</p><p>65. p178 Extreme Value Theorem If f is continuous over a closed interval, then f has a maximum and minimum value over that interval.</p><p>66. p186 Mean Value Theorem If f (x) is a differentiable function over a,b , (for derivatives) then at some point between a and b : f (b) f (a) f (c) b a</p><p>67. p221 linearization formula L(x) f (a) f (a) (x a)</p><p> f bxn g 68. p223 Newton’s Method xn1 xn f bxn g</p><p>69. p269 k f u du k f u du 70. p269 zf (u) g(u) du zf (u)du zg(u)du</p><p>71. p272 Mean Value Theorem If f is continuous on a, b , then at some 1 b (for definite integrals) point c in a, b , f c f x dx b a a</p><p> d u 72. p277 First fundamental theorem: f( t ) dt f ( u ) u dx a</p><p> h 73. p290 Trapezoidal Rule: T y 2y 2y ...2y y 2 b0 1 2 n1 n g</p><p> h 74. p292 Simpson’s Rule: S y 4y 2y ...2y 4y y 3 b0 1 2 n2 n1 n g 6 of 11 Hanford High School Calculus Richland, Washington 75. zdu u c</p><p> n1 n u 76. p315 u du c n 1 z n 1</p><p>77. p317 sinu du cosu c</p><p>78. p317 cosu du sinu c</p><p>79. p317 sec2 u du tanu c</p><p>80. p317 csc2 u du cot u c</p><p>81. p317 secu tan u du secu c</p><p>82. p317 cscu cot u du cscu c</p><p>1 83. du ln u c zu 84. zeudu eu c</p><p>1 85. audu au c z lna</p><p>86. tanu du ln cosu c</p><p>87. cotu du ln sin u c</p><p>88. secu du ln secu tanu c</p><p>89. cscu du ln cscu cot u c</p><p> du u 90. arcsin c za2 u2 a</p><p>7 of 11 Hanford High School Calculus Richland, Washington du 1 u 91. arctan c za2 u2 a a</p><p> du 1 u 92. arcsec c zu u2 a2 a a</p><p>93. p323 Integration by parts: zudv uv zvdu 94. p323 order for choosing u in LIPET logs, inverse trig., polynomial, integration by parts: exponential, trig.</p><p> kt 95. p330 exponential change: y y0e</p><p> ln 2 96. p332 half-life k</p><p> rt 97. continuous compound interest: A(t) Aoe</p><p> dP K 98. p343 logistics differential equation: P M P dt M</p><p>M 99. p343 logistics growth model P 1 Aekt</p><p>2 b dy 100. p389 surface area about x axis (Cartesian): S2 y 1 dx a dx </p><p>2 b dy 101. p397 length of curve (Cartesian): L1 dx a dx </p><p>102. Mr. Kelly’s e-mail address: [email protected]</p><p> ln n 103. p417 lim 0 n n</p><p>104. lim n n 1 n</p><p>1 105. lim x n 1 n</p><p>8 of 11 Hanford High School Calculus Richland, Washington n 106. lim x 0 x 1 n c h</p><p> x n F I x 107. limG1 J e nH nK</p><p> xn 108. lim 0 n n!</p><p> n n(n 1) 109. k k 1 2</p><p> n n(n 1)(2n 1) 110. k 2 k 1 6</p><p> n n(n 1) 2 111. k 3 GF JI k 1 H 2 K</p><p> a 1 r n 112. partial sum of geometric series: S c h n 1 r</p><p> a 113. p459 What series? ar n1 geometric, converges to if r 1 n1 1 r</p><p> f (0) f (0) 114. p473 Maclaurin Series: P(x) f (0) f (0)x x 2 x 3 ... 2! 3!</p><p> f (a) 2 115. p475 Taylor Series: P(x) f (a) f (a)(x a) x a 2! b g f (a) 3 x a ... 3! b g</p><p>1 1 116. p477 Maclaurin Series for 1 x x 2 x 3 ... 1 x 1 x</p><p>1 1 117. p477 Maclaurin Series for 1 x x 2 x 3 ... 1 x 1 x</p><p> x 2 x 3 x 4 118. p477 Maclaurin Series for e x e x 1 x ... 2! 3! 4!</p><p>9 of 11 Hanford High School Calculus Richland, Washington x 3 x 5 x 7 119. p477 Maclaurin Series for sin x sin x x ... 3! 5! 7!</p><p> x 2 x 4 x 6 120. p477 Maclaurin Series for cos x cos x 1 ... 2! 4! 6!</p><p> x2 x3 x4 121. p477 Maclaurin Series for ln(1 x) ln(1 x) x ... 2 3 4</p><p>3 5 7 1 x x x 122. p477 Maclaurin Series for tan x : tan1(x) x ... 3 5 7</p><p>n1 f c n1 123. p482 Lagrange form of remainder R x x a n n 1 !</p><p>M n1 124. p483 Remainder Estimation Theorem Rn x x a n 1 !</p><p> 1 125. p484 What series? reciprocal of factorials, converges to e n0 n!</p><p></p><p> b b b1- lim bn+ 1 126. p494 What series? bn n1g telescoping series, converges to n n1</p><p> 1 p p 1 127. p497 What series? p series, converges if n1 n</p><p> 1 128. p498 What series? harmonic, diverges n1 n</p><p> n1 1 129. p500 What series? b1g alternating harmonic, converges n1 n</p><p> dy d 2 y 130. p514 2nd deriv. of parametrized curve: dt dx2 dx dt</p><p>10 of 11 Hanford High School Calculus Richland, Washington 2 2 b dx dy 131. p514 length of curve (parametric): L GF JI GF JI dt za Hdt K Hdt K</p><p>2 2 b dx dy 132. p517 surface area (parametric): S 2y GF JI GF JI dt za Hdt K Hdt K</p><p>133. p532 position vector (standard form): r t f ti g t j h t k</p><p>134. p533 speed from velocity vector: speed = vbtg</p><p> velocity vector vbtg 135. p533 direction from velocity vector: direction = speed vbtg</p><p>136. p555 polar to Cartesian: x r cos , y r sin</p><p> x xo v o cos t 137. p543 trajectory equations: 1 y y vsin t gt 2 o o 2</p><p> rsin r cos 138. p560 slope of polar graph: slope at (r,) r cos r sin</p><p>139. slope of polar graph at origin: slope = tan</p><p> 1 140. p562 area inside polar curve: A r 2d z 2</p><p>2 dr 141. p564 length of curve (polar): L r 2 GF JI d z Hd K</p><p>2 dr 142. p565 surface area (polar): S 2r sin r 2 GF JI d z Hd K</p><p>11 of 11 Hanford High School Calculus Richland, Washington</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages11 Page
-
File Size-