UNIVERSITY of CALIFORNIA, SAN DIEGO Intracellular and Extracellular Interactions of the Low Density Lipoprotein Receptor Related

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO Intracellular and Extracellular Interactions of the Low Density Lipoprotein Receptor Related UNIVERSITY OF CALIFORNIA, SAN DIEGO Intracellular and Extracellular Interactions of the Low Density Lipoprotein Receptor Related Protein (LRP-1) A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Miklos Guttman Committee in charge: Professor Elizabeth Komives, Chair Professor Tracy Handel Professor Kim Prather Professor Susan Taylor Professor Hector Viadiu-Ilarraza 2009 Copyright© Miklos Guttman, 2009 All rights reserved. The dissertation of Miklos Guttman is approved, and it is acceptable in quality and form for publication on microfilmand and electronically: ______________________________________________________ ______________________________________________________ ______________________________________________________ ______________________________________________________ ______________________________________________________ Chair University of California, San Diego 2009 iii TABLE OF CONTENTS Signature Page……………………………………………………................... iii Table of Contents……………………………………………………................ iv List of Symbols and Abbreviations……………………………..................... vi List of Figures…………………………………………………………………… ix List of Tables……………………………………..…………………………….. xi Acknowledgements…………………………….…………………….………… xii Vita, Publications, Fields of Study........……………… …………………….. xiv Abstract of the Dissertation…………………….…………………………….. xvi CHAPTER 1………………………………………………………………... 1 Introduction The LDL family of receptors…….………...….....……………………. 2 The LDL-receptor (LDLR)......…………..…… ……………….……… 5 Apolipoprotein E..………………………………… ……………..……. 7 LDL-receptor related protein (LRP-1)………… ………..….…..... 8 Cytoplasmic interactions of LDLRs.………… ……………………… 11 Goals of dissertation..…………………… …………………………… 13 References…………………………………………………….….. …… 14 CHAPTER 2…………………………………………………………………… 22 Expression Refolding and Characterization of CR domains Introduction..………………………………….……………… ………. 23 Materials and Methods…………………………….…..................... 25 Results…….……...…………………………….…...……….……..... 28 Discussion.…………………………….…….................................... 39 References…………....…………………………………….………… 45 iv CHAPTER 3……………………………………………………….................. 49 Properties of Ligand Binding Modules Governing the Interaction with ApoE Introduction...…………………………...…………….…………. …… 50 Materials and Methods………………………................................... 54 Results…………………………………………………….........…....... 59 Discussion…………………………………….....…………….………. 75 References…………………………………………….....……………. 83 CHAPTER 4..……………………………………..…………………… …...... 89 Structure of the Minimum Interface between ApoE and LRP Introduction..……………………...…………………………… ……… 90 Materials and Methods……...……………...………………………… 92 Results…………..…………………………..………………………..... 99 Discussion….……………………………………….……….…..... …… 124 References..................................................................................... 138 CHAPTER 5….……………………………………………………..………… 144 Interactions of the NPXY Microdomains of LRP-1 Introduction.................................................................................... 145 Materials and Methods.................................................................... 147 Results........................................................................................... 155 Discussion……………………………………………………….……. 165 References…………………………………..................................... 178 v LIST OF SYMBOLS AND ABBREVIATIONS LDL Low density lipoprotein VLDL Very low density lipoprotein LDLR LDL- Receptor LRP LDLR-Related Protein sLRP soluble LRP VLDLR VLDL-Receptor CR Complement repeat LA Ligand binding module GST Glutatione-S-Transferase RAP Receptor Associated Protein α2M Alpha-2-macroglobulin ApoE Apolipoprotein E β-VLDL Beta-very low density lipoprotein EDTA Ethylenediaminetetraacetic acid HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid TCEP (tris(2-carboxyethyl)phosphine) HPLC High performance liquid chromatography SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis NMR Nuclear magnetic resonance TOCSY Total correlation spectroscopy NOE Nuclear Overhauser effect NOESY Nuclear Overhauser effect spectroscopy vi COSY Correlation spectroscopy HSQC Heteronuclear single quantum coherence hNOE 1H-15N heteronuclear NOE R1 Longitudinal relaxation rate R2 Transverse relaxation rate ppm parts per million HDX Hydrogen Deuterium exchange RMSD Root mean square deviation MALDI-TOF Matrix assisted laser desorbtion ionization- time of flight AUC Analytical ultracentrifugation CD Circular dichroism kDa kiloDalton SPR Surface plasmon resonance KD Dissociation equilibrium constant NC Negative control Std Standard HMW High molecular weight PCR Polymerase chain reaction APP Amyloid precursor protein CAMKII Calmodulin-dependent kinase II CSK C-src kinase HA Influenza hemagglutinin protein vii LRP1-CT LRP1 cytoplasmic domain (amino acids 4745-4807) MEF Mouse embryonic fibroblasts MUDPIT Multidimensional protein identification technology PDGF Platelet-derived growth factor PI3K Phosphoinositide-3 kinase PTB Phosphotyrosine binding domain Snx17 Sorting nexin 17 viii LIST OF FIGURES Figure 1.1: Mechanism of receptor mediated endocytosis…................... 4 Figure 1.2: Schematic of three members of the LDL receptor family ....... 6 Figure 1.3: Crystal structure of Apolipoprotein E………………………….. 10 Figure 2.1: SDS-PAGE analysis of expression and purification CRs…… 30 Figure 2.2: 1H,15N HSQC spectra of each CR/LA…....................... …….. 35 Figure 2.3: Analytical RP-HPLC of denaturing vs. native conditions……. 36 Figure 2.4: 1H,15N HSQC of LA4 after native HPLC purification…........... 37 Figure 2.5: Calcium binding isotherms of each individual CR/LA ………. 38 Figure 2.6: Calcium binding of LA45, CR16-18 and LA4 at pH 5.2…....... 40 Figure 2.7: Affinity pulldown assays of CR16-18 with ApoE(130-149)….. 42 Figure 3.1: Schematic diagram of LRP, LDL, and VLDL ......................... 52 Figure 3.2: Binding of smaller units of CR16-18 to ApoE(130-149)......... 62 Figure 3.3: NMR titration of Ub-ApoE(130-149) into each CR/LA........... 63 Figure 3.4: NMR titration of Ub-ApoE(130-149) into LA4-5 & CR16-18.. 64 Figure 3.5: Amide perturbations and plots of titrations…………………… 67 Figure 3.6: NMR titration of Ub-RAPD3 into each CR/LA……………….. 70 Figure 3.7: ApoE(130-149) affinity pulldowns with LA/CR constructs…... 72 Figure 3.8: ApoE(1-191)-DMPC and GST-RAP pulldown assays............ 73 Figure 3.9: Sequence alignments of LA4/VLA5 and LA5/VLA6 from various species………………………………… ……………….... …….. 74 Figure 3.10: Proposed models of how LDL receptors might bind ApoE- containing lipoprotein particles ……….……………................ 82 ix Figure 4.1: Perturbations of CR17 from binding various ligands.............. 101 Figure 4.2: Perturbations of ApoE(130-149) from CR17 binding.............. 102 Figure 4.3: Chemical shift index plot for ApoE(130-149)…………………. 103 Figure 4.4: Solution structure of CR17……………...……….................... 106 Figure 4.5: Calcium binding of CR17(K5A) and CR17-ApoE(130-149)… 109 Figure 4.6: HSQC comparison of CR17 to CR17-ApoE(130-149)……… 110 Figure 4.7: Native tryptophan fluorescence of CR17 constructs……….. 113 Figure 4.8: NMR titrations with fusion and CR17(K5A) constructs…….. 114 Figure 4.9: Solution structure of CR17-ApoE(130-149)……..... ……….. 117 Figure 4.10: Structural and dynamic consequences of ligand binding….. 118 Figure 4.11: NMR perturbations within CR17-ApoE(130-149)........... ….. 119 Figure 4.12: Relaxation measurements for CR17 constructs.................... 123 Figure 4.13: A different binding mode of ApoE(130-149) on CR17.…….. 131 Figure 4.14: Comparison of receptor interactions in ApoE and RAP......... 136 Figure 5.1: Anti pTyr blots of LRP-1 immuno-precipitates……...………... 158 Figure 5.2: SDS-PAGE of proteins binding NPXpY 4507………………… 159 Figure 5.3: Analysis of binding proteins to each microdomain................. 161 Figure 5.4: Effect of dephosphorylating NPXpY 4507 on binding………. 162 Figure 5.5: Specific detection of interacting proteins …………………….. 164 Figure 5.6: Detection of interactions with recombinant proteins…..…….. 167 x LIST OF TABLES Table 2.1: MALDI TOF analysis of expressed CR constructs…………….. 31 Table 2.2: Thermodynamics of calcium binding for each CR….………….. 41 Table 3.1: Binding affinities for various ApoE-LA/CR interactions………. 68 Table 4.1: CR17 & CR17-ApoE(130-149) refinement statistics…………. 107 Table 5.1: LRP1 NPXpY4507 interacting proteins……………...…………… 173 Table 5.2: LRP1 NPXpY4507 interacting proteins………………………….. 175 Table 5.3: LRP1 NPXpY4473 interacting proteins…………………………… 175 Table 5.4: LRP1 NPXY4507 interacting proteins……………………………. 176 xi ACKNOWLEDGEMENTS First and foremost I would like to thank my advisor, Elizabeth Komives for her mentorship and encouragement throughout my graduate career. My fellow lab members, past and present, have all been tremendously helpful along the way. I would like to especially thank former graduate students J. Helena Prieto, Johnny E. Croy, and Gina Betts for paving the way for this project, and also Mela Mulvihill continuing the research in this area. It was a pleasure to work together with Jonathan Ostrem through the toughest parts of this project. Carla Cervantes has been greatly helpful in designing and analyzing NMR experiments. Thank you Simon Bergqvist, from whom I learned everything about calorimetry and ultracentrifugation, and Stephanie Truhlar who helped me with advice along the way. I would like to thank some of the senior scientists that have aided in my scientific
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • The VLDL Receptor Regulates Membrane Progesterone Receptor
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs212522. doi:10.1242/jcs.212522 RESEARCH ARTICLE The VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling Nancy Nader, Maya Dib, Raphael Courjaret, Rawad Hodeify, Raya Machaca, Johannes Graumann and Khaled Machaca* ABSTRACT the plasma membrane and interact with the classical P4 receptor, is Progesterone mediates its physiological functions through activation of nonetheless effective at mediating non-genomic P4 signaling both transcription-coupled nuclear receptors and seven-pass- (Bandyopadhyay et al., 1998; Dressing et al., 2011; Peluso et al., transmembrane progesterone receptors (mPRs), which transduce 2002). These results argued for the presence of membrane P4 the rapid non-genomic actions of progesterone by coupling to various receptors that are distinct from the nuclear P4 receptors. In 2003, the signaling modules. However, the immediate mechanisms of action Thomas laboratory identified a family of membrane progesterone downstream of mPRs remain in question. Herein, we use an untargeted receptors (mPRs) from fish ovaries (Zhu et al., 2003a,b) that belong quantitative proteomics approach to identify mPR interactors to better to the progestin and adiponectin (AdipoQ) receptor family (also define progesterone non-genomic signaling. Surprisingly, we identify named PAQ receptors). However, the signal transduction cascade the very-low-density lipoprotein receptor (VLDLR) as an mPRβ downstream of mPRs that mediates the non-genomic actions of P4 (PAQR8) partner that is required for mPRβ plasma membrane remains unclear. localization. Knocking down VLDLR abolishes non-genomic The non-genomic action of mPR and the ensuing signaling progesterone signaling, which is rescued by overexpressing VLDLR.
    [Show full text]
  • The Chondroitin Sulfate Moiety Mediates Thrombomodulin-Enhanced Adhesion and Migration of Vascular Smooth Muscle Cells
    Pai et al. Journal of Biomedical Science (2018)25:14 https://doi.org/10.1186/s12929-018-0415-7 RESEARCH Open Access The chondroitin sulfate moiety mediates thrombomodulin-enhanced adhesion and migration of vascular smooth muscle cells Vincent Chunpeng Pai1†, I-Chung Lo2†, Yan wun Huang1, I-Ching Tsai1, Hui-Pin Cheng1, Guey-Yueh Shi2,3, Hua-Lin Wu2,3 and Meei Jyh Jiang1,2* Abstract Background: Thrombomodulin (TM), a transmembrane glycoprotein highly expressed in endothelial cells (ECs), is a potent anticoagulant maintaining circulation homeostasis. Under inflammatory states, TM expression is drastically reduced in ECs while vascular smooth muscle cells (VSMCs) show a robust expression of TM. The functional role of TM in VSMCs remains elusive. Methods: We examined the role of TM in VSMCs activities in human aortic VSMCs stimulated with platelet-derived growth factor-BB (PDGF-BB). Using rat embryonic aorta-derived A7r5 VSMCs which do not express TM, the role of the chondroitin sulfate (CS) moiety of TM in VSMCs was delineated with cells expressing wild-type TM and the CS-devoid TM mutant. Results: Expression of TM enhanced cell migration and adhesion/spreading onto type I collagen, but had no effect on cell proliferation. Knocking down TM with short hairpin RNA reduced PDGF-stimulated adhesion and migration of human aortic VSMCs. In A7r5 cells, TM-mediated cell adhesion was eradicated by pretreatment with chondroitinase ABC which degrades CS moiety. Furthermore, the TM mutant (TMS490, 492A)devoidofCS moiety failed to increase cell adhesion, spreading or migration. Wild-type TM, but not TMS490, 492A,increased focal adhesion kinase (FAK) activation during cell adhesion, and TM-enhanced cell migration was abolished by a function-blocking anti-integrin β1 antibody.
    [Show full text]
  • Endotoxin Enhances Tissue Factor and Suppresses Thrombomodulin Expression of Human Vascular Endothelium in Vitro Kevin L
    Endotoxin Enhances Tissue Factor and Suppresses Thrombomodulin Expression of Human Vascular Endothelium In Vitro Kevin L. Moore,* Sharon P. Andreoli,* Naomi L. Esmon,1 Charles T. Esmon,l and Nils U. Bang1l Department ofMedicine, Section ofHematology/Oncology,* and Department ofPediatrics, Section ofNephrology,t Indiana University School ofMedicine, Indianapolis, Indiana 46223; Oklahoma Medical Research Foundation,§ Oklahoma City, Oklahoma 73104; and Lilly Laboratory for Clinical Research,1' Indianapolis, Indiana 46202 Abstract to support the assembly of clotting factor complexes on their surfaces (13, 14). Endotoxemia is frequently associated clinically with disseminated Under physiologic conditions the thromboresistant properties intravascular coagulation (DIC); however, the mechanism of en- ofthe endothelium are predominant. In some pathological states, dotoxin action in vivo is unclear. Modulation of tissue factor however, this may not be the case. Gram-negative sepsis is fre- (TF) and thrombomodulin (TM) expression on the endothelial quently associated with varying degrees of disseminated intra- surface may be relevant pathophysiologic mechanisms. Stimu- vascular coagulation (DIC),' which is thought to be triggered by lation of human umbilical vein endothelial cells with endotoxin endotoxemia. The pathophysiology of DIC in gram-negative (1 ,ug/ml) increased surface TF activity from 1.52±0.84 to sepsis is complex and the mechanism(s) by which endotoxemia 11.89±8.12 mU/ml-106 cells at 6 h (n = 11) which returned to promotes intravascular coagulation in vivo is unclear. Recently, baseline by 24 h. Repeated stimulation at 24 h resulted in renewed reports by several investigators provide evidence that the throm- TF expression. Endotoxin (1 ,tg/ml) also caused a decrease in boresistance of the endothelial cell is diminished after exposure TM expression to 55.0±6.4% of control levels at 24 h (n = 10) to endotoxin in the absence of other cell types.
    [Show full text]
  • Path Ggf 5 2020.Pdf
    Hemostasis Hemostasis and Thrombosis Normal hemostasis is a consequence of tightly regulated processes that maintain blood in a fluid state in normal vessels, yet also permit the rapid formation of a hemostatic clot at the site of a vascular injury. Thrombosis involves blood clot formation within intact vessels. Both hemostasis and thrombosis involve three components: the vascular wall, platelets and the coagulation cascade. Elements of the Hemostatic process • Endothelium • Anti-thrombosis • Pro-thrombosis • Platelets • Platelet-endothelial cell interaction • Coagulation cascade http://www.as.miami.edu/chemistry/2086/chapter_21/NEW-Chap21_class_part1_files/image002.jpg After initial injury there is a brief period of arteriolar vasoconstriction mediated by reflex neurogenic mechanisms and augmented by the local secretion of factors such as endothelin (a potent endothelium-derived vasoconstrictor) The effect is transient, however, and bleeding would resume if not for activation of the platelet and coagulation systems. Endothelial injury exposes highly thrombogenic subendothelial extracellular matrix (ECM), facilitating platelet adherence and activation. Activation of platelets results in a dramatic shape change (from small rounded discs to flat plates with markedly increased surface area), as well as the release of secretory granules. Within minutes the secreted products recruit additional platelets (aggregation) to form a hemostatic plug; this process is referred to as primary hemostasis. http://www.ouhsc.edu/platelets/Platelet%20Pic s/Platelets3.jpg http://medcell.med.yale.edu/histology/blood_bone_marr ow_lab/images/platelets_em.jpg Tissue factor is also exposed at the site of injury. Also known as factor III and thromboplastin, tissue factor is a membrane-bound procoagulant glycoprotein synthesized by endothelial cells. It acts in conjunction with factor VII (see below) as the major in vivo initiator of the coagulation cascade, eventually culminating in thrombin generation.
    [Show full text]
  • Apo E Structure Determines VLDL Clearance and Atherosclerosis Risk in Mice
    Apo E structure determines VLDL clearance and atherosclerosis risk in mice Christopher Knouff, … , Patrick M. Sullivan, Nobuyo Maeda J Clin Invest. 1999;103(11):1579-1586. https://doi.org/10.1172/JCI6172. Article We have generated mice expressing the human apo E4 isoform in place of the endogenous murine apo E protein and have compared them with mice expressing the human apo E3 isoform. Plasma lipid and apolipoprotein levels in the mice expressing only the apo E4 isoform (4/4) did not differ significantly from those in mice with the apo E3 isoform (3/3) on chow and were equally elevated in response to increased lipid and cholesterol in their diet. However, on all diets tested, the 4/4 mice had approximately twice the amount of cholesterol, apo E, and apo B-48 in their VLDL as did 3/3 mice. The 4/4 VLDL competed with human LDL for binding to the human LDL receptor slightly better than 3/3 VLDL, but the VLDL clearance rate in 4/4 mice was half that in 3/3 mice. On an atherogenic diet, there was a trend toward greater atherosclerotic plaque size in 4/4 mice compared with 3/3 mice. These data, together with our earlier observations in wild- type and human APOE*2-replacement mice, demonstrate a direct and highly significant correlation between VLDL clearance rate and mean atherosclerotic plaque size. Therefore, differences solely in apo E protein structure are sufficient to cause alterations in VLDL residence time and atherosclerosis risk in mice. Find the latest version: https://jci.me/6172/pdf Apo E structure determines VLDL clearance and atherosclerosis risk in mice Christopher Knouff,1 Myron E.
    [Show full text]
  • Apoer2/VLDL Receptor and Dab1 in the Rostral Migratory Stream Function in Postnatal Neuronal Migration Independently of Reelin
    ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin Nuno Andrade*, Vukoslav Komnenovic†, Sophia M. Blake*, Yves Jossin‡, Brian Howell§, Andre Goffinet‡, Wolfgang J. Schneider*, and Johannes Nimpf*¶ *Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria; †Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria; ‡Developmental Neurobiology Unit, University of Leuven Medical School, 3000 Leuven, Belgium; and §Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 Edited by Thomas C. Su¨dhof, The University of Texas Southwestern Medical Center, Dallas, TX, and approved March 30, 2007 (received for review December 21, 2006) Postnatal migration of interneuron precursors from the subventricu- In the cerebrum, Reelin is crucial for correct positioning of lar zone to the olfactory bulb occurs in chains that form the substrate radially migrating neuroblasts via its binding to ApoER2 and for the rostral migratory stream. Reelin is suggested to induce de- very-low-density lipoprotein receptor (VLDLR) (18, 19), which tachment of neuroblasts from the chains when they arrive at the triggers tyrosine phosphorylation of the adaptor Dab1 by re- olfactory bulb. Here we show that ApoER2 and possibly very-low- ceptor clustering (20). Binding of Reelin to the receptors and density lipoprotein receptor (VLDLR) and their intracellular adapter subsequent phosphorylation of Dab1 are consecutive steps of a protein Dab1 are involved in chain formation most likely independent linear pathway, because disruption of any of the corresponding of Reelin.
    [Show full text]
  • The Lectin-Like Domain of Thrombomodulin Inhibits 1 Integrin
    biomedicines Article The Lectin-Like Domain of Thrombomodulin Inhibits β1 Integrin-Dependent Binding of Human Breast Cancer-Derived Cell Lines to Fibronectin Eiji Kawamoto 1,2,* , Nodoka Nago 3, Takayuki Okamoto 4 , Arong Gaowa 1, Asami Masui-Ito 1,2, Yuichi Akama 1,2, Samuel Darkwah 1, Michael Gyasi Appiah 1, Phyoe Kyawe Myint 1 , Gideon Obeng 1, Atsushi Ito 1 , Siqingaowa Caidengbate 1, Ryo Esumi 1,2, Takanori Yamaguchi 1, Eun Jeong Park 1 , Hiroshi Imai 2 and Motomu Shimaoka 1 1 Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; [email protected] (A.G.); [email protected] (A.M.-I.); [email protected] (Y.A.); [email protected] (S.D.); [email protected] (M.G.A.); [email protected] (P.K.M.); [email protected] (G.O.); [email protected] (A.I.); [email protected] (S.C.); [email protected] (R.E.); [email protected] (T.Y.); [email protected] (E.J.P.); [email protected] (M.S.) 2 Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; [email protected] 3 Department of Clinical Nutrition, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka-city, Mie 510-0293, Japan; [email protected] 4 Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-59-232-5036; Fax: +81-59-231-5209 Citation: Kawamoto, E.; Nago, N.; Okamoto, T.; Gaowa, A.; Masui-Ito, Abstract: Thrombomodulin is a molecule with anti-coagulant and anti-inflammatory properties.
    [Show full text]
  • Thrombomodulin Is Present in Human Plasma and Urine
    Thrombomodulin is present in human plasma and urine. H Ishii, P W Majerus J Clin Invest. 1985;76(6):2178-2181. https://doi.org/10.1172/JCI112225. Research Article Thrombomodulin is an endothelial cell membrane protein that is a cofactor required for the rapid activation of plasma protein C. We now report that plasma and urine of normal subjects contains a modified form of thrombomodulin that is soluble. The levels measured by radioimmunoassay were 292 +/- 60 ng thrombomodulin/ml plasma and 102 +/- 38 ng thrombomodulin/ml urine. Thrombomodulin was isolated from both plasma and urine by immunoaffinity chromatography using a polyclonal anti-human thrombomodulin IgG column. The apparent molecular weight of soluble thrombomodulin was estimated by immunoblot analysis using 125I-monoclonal anti-thrombomodulin IgG. When run without 2- mercaptoethanol, soluble thrombomodulin appeared as two polypeptides, Mr = 63,000 and 54,000, while samples run with 2-mercaptoethanol migrated mainly at Mr = 85,000. These results imply that the soluble form of thrombomodulin is smaller than the cellular form, presumably because of a lack of the membrane-binding domain. Soluble thrombomodulin is similar to cellular thrombomodulin in its intrinsic protein C-activating cofactor activity as measured by antibody neutralization. The apparent Km for protein C was the same for cellular and soluble thrombomodulin, while the soluble form requires a higher concentration of thrombin (three- to fivefold) for one-half maximal activity than the cellular form. Thrombomodulin functional activity cannot be directly measured in plasma because of some inhibitory substance(s). The physiological significance of circulating and urinary thrombomodulin is presently […] Find the latest version: https://jci.me/112225/pdf Thrombomodulin Is Present in Human Plasma and Urine Hidemi Ishii and Philip W.
    [Show full text]
  • Biomarker Assay LUMINEX ELISA
    Biomarker Assay LUMINEX ELISA Test your samples Have your data MILAN – OXFORD – SAN DIEGO HQ Via Apelle, 41 – 20128 – Italy RO Via Ranzato, 12 – 20128 – Italy W labospace.com @ [email protected] T +39 02 35980841 F +39 02.2572231 PI IT 07312350965, REA Milano 1951817 del 16/02/2011 Biomarker Testing Service Luminex Multiparameter & ELISA Testing Service Biomarker multiplex immunoassays service offered by Labospace is an high efficient tools for measuring the levels of multiple proteins in a single sample volume, tipically 10-50uL using Luminex technology. Using our service means: • Enables you to obtain reproducible, quantitative high-quality data from a small volume • Receive high-quality assay/data feedback with reports created by experienced professionals • Optimize your time and resources to focus on other projects •Most flexible and accurate multiplex assay service available. •User-friendly ordering tool with the support of our expertise team •Build your own panel from over 800 analytes. •Available as ready to go multifactor panels as well as custom made panels Execution under ISO regulatory SOPS LABOSPACE.COM M COM 703 REV00 How it works Contact [email protected] and tell your needs Discuss our proposal and define the panel SOW generation and approval in order to meet your expectations Prepare the assay layout, with or without the Labospace’s support team, and provide the data in the template provided. The Labospace team will organize the data pick up and prepare the documentation for your laboratory.- Data Delivery High Throughput capability 384 well plate on Human Multi-Combo Screening 65 analytes Mouse Multi-Combo Screening 48 analytes LABOSPACE.COM M COM 703 REV00 Panels Available Cat.
    [Show full text]
  • Bleeding Thrombotic and Platelet Disorder TIER1 Genes (V.ISTH 2020.1)
    Bleeding Thrombotic and Platelet Disorder TIER1 genes (v.ISTH_2020.1) Gene Category Associated disorder(s) Inheritance Transcript Location symbol Bleeding/coagulation F10 Factor X deficiency AR; AD NM_000504.3 13q34 Bleeding/coagulation F11 Factor XI deficiency AR; AD NM_000128.3 4q35.2 Coagulation Factor XII deficiency AR (coagulation) F12 NM_000505.3 5q35.3 Angioedema Angioedema AD (angioedema) Bleeding/coagulation F13A1 Factor XIII deficiency AR NM_000129.3 6p25.1 Bleeding/coagulation F13B Factor XIII deficiency AR NM_001994.2 1q31.3 Bleeding/coagulation Prothrombin deficiency AR (bleeding/coagulation) Thrombosis F2 Thrombophilia due to AD (thrombosis) NM_000506.4 11p11.2 thrombin defect Bleeding/coagulation Factor V deficiency AR (bleeding/coagulation) Thrombosis F5 Thrombophilia due to AD (thrombosis) NM_000130.4 1q24.2 activated protein C resistance Bleeding/coagulation F7 Factor VII deficiency AR; AD NM_000131.4 13q34 Bleeding/coagulation F8 Haemophilia A XLR NM_000132.3 Xq28 Bleeding/coagulation F9 Haemophilia B XLR NM_000133.3 Xq27.1 AR (afibrinogenemia); Bleeding FGA Fibrinogen deficiency AD NM_000508.3 4q31.3 (hypo/dysfibrinogenemia) AR (afibrinogenemia); Bleeding FGB Fibrinogen deficiency AD NM_005141.4 4q31.3 (hypo/dysfibrinogenemia) AR (afibrinogenemia); Bleeding FGG Fibrinogen deficiency AD NM_021870.2 4q32.1 (hypo/dysfibrinogenemia) Vitamin K-dependent clotting Bleeding/coagulation GGCX AR NM_000821.6 2p11.2 factors deficiency 1 Coagulation KNG1 Kininogen Deficiency AR NM_000893.4 3q27.3 Combined factor V and VIII Bleeding/coagulation
    [Show full text]
  • Thrombomodulin Is Upregulated in the Kidneys of Women with Pre‑Eclampsia Cleo C
    www.nature.com/scientificreports OPEN Thrombomodulin is upregulated in the kidneys of women with pre‑eclampsia Cleo C. L. van Aanhold 1*, Manon Bos1,2, Katrina M. Mirabito Colafella3,4, Marie‑Louise P. van der Hoorn2, Ron Wolterbeek5, Jan A. Bruijn1, Kitty W. M. Bloemenkamp6, Anton H. van den Meiracker3, A. H. Jan Danser3 & Hans J. Baelde1 The endothelial glycoprotein thrombomodulin regulates coagulation, vascular infammation and apoptosis. In the kidney, thrombomodulin protects the glomerular fltration barrier by eliciting crosstalk between the glomerular endothelium and podocytes. Several glomerular pathologies are characterized by a loss of glomerular thrombomodulin. In women with pre‑eclampsia, serum levels of soluble thrombomodulin are increased, possibly refecting a loss from the glomerular endothelium. We set out to investigate whether thrombomodulin expression is decreased in the kidneys of women with pre‑eclampsia and rats exposed to an angiogenesis inhibitor. Thrombomodulin expression was examined using immunohistochemistry and qPCR in renal autopsy tissues collected from 11 pre‑ eclamptic women, 22 pregnant controls and 11 hypertensive non‑pregnant women. Further, kidneys from rats treated with increasing doses of sunitinib or sunitinib in combination with endothelin receptor antagonists were studied. Glomerular thrombomodulin protein levels were increased in the kidneys of women with pre‑eclampsia. In parallel, in rats exposed to sunitinib, glomerular thrombomodulin was upregulated in a dose‑dependent manner, and the upregulation of glomerular thrombomodulin preceded the onset of histopathological changes. Selective ETAR blockade, but not dual ETA/BR blockade, normalised the sunitinib‑induced increase in thrombomodulin expression and albuminuria. We propose that glomerular thrombomodulin expression increases at an early stage of renal damage induced by antiangiogenic conditions.
    [Show full text]