Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography Bibliography Aldridge, R.J., ed. 1987. Paleobiology of Conodonts. Chichester: Ellis Horwood. Allaby, Michael, and Ailsa. 2013. Oxford Dictionary of Geology and Earth Sciences. Oxford: Oxford University Press. Allman, Warren D., and David J. Bottjer. 2001. Evolutionary Paleoecology. New York: Columbia University Press. Apaldetti, Cecilia, et al. 2018. An Early Trend Toward Gigantism in Triassic Sauropodomorph Dinosaurs. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-018-0599-y. Arbour, Victoria M., and David C. Evans. 2017. A New Ankylosaurine Dinosaur from the Judith River Formation of Montana. Royal Society Open Science. https://doi.org/10.1098/rsos.161086. Aric, Cedric, and Jean-Bernard Caron. 2017. Mandibulate Convergence in an Armored Cambrian Stem Chelicerate. BMC Evolutionary Biology 17: 261. https://doi.org/10.1186/ s12862-017-1088-7. Armstrong, Howard A., and Martin D. Brasier. 2005. Microfossils. Oxford: Blackwell Publishing. Balinski, Andrzej, and Yuanlin Sun. 2017. Early Ordovician Black Corals [Antipatharia] from China. Bulletin of Geosciences 92: 1): 1–1):12. Baron, Matthew G., David B. Norman, and Paul M. Barrett. 2017. A New Hypothesis of Dinosaur Relationships and Early Dinosaur Evolution. Nature 543: 501–506. https://doi.org/10.1038/ nature21700. Bate, R.H., et al. 1982. Fossil and Recent Ostracods. Chichester: Ellis Horwood. Beerling, David. 2007. The Emerald Planet: How Plants Changed Earth’s History. Oxford: Oxford University Press. Bennett, C. Verity, et al. 2018. Deep Time Diversity of Metatherian Mammals: Implications for Evolutionary History and Fossil-Record Quality. Paleobiology 44 (2): 171–198. Benton, Michael J., ed. 1993. The Fossil Record 2. 2nd ed. London: Chapman and Hall. ———. 1998. The Quality of the Fossil Record of the Vertebrates. In The Adequacy of the Fossil Record, ed. Donovan and Paul, 269–303. Benton, Michael. 2003. When Life Nearly Died. London: Thames and Hudson. Benton, Michael J. 2009. Paleontology and the History of Life. In Evolution: The First Four Billion Years, ed. Ruse and Travis, 80–104. ———. 2014. Vertebrate Palaeontology. 4th ed. Boston: Wiley-Blackwell. Berta, Annalisa. 2012. Return to the Sea. Berkeley: U.C. Press. Berta, Annalisa, and James Sumich. 2015. Marine Mammals: Evolutionary Biology. 3rd ed. Amsterdam: Elsevier. Blazejowski, B., et al. 2016. Ancient Animal Migration: A Case Study of Eyeless, Dimorphic Devonian Trilobites from Poland. Palaeontology 59: 743–759. © Springer Nature Switzerland AG 2019 459 R. L. Carlton, A Concise Dictionary of Paleontology, https://doi.org/10.1007/978-3-030-25586-2 460 Bibliography Boardman, Richard S., Alan Cheetham, and Albert J. Rowell. 1987. Fossil Invertebrates. Palo Alto: Blackwell Scientific. Botting, Joseph. 2016. Diversity and Ecology of Sponges in the Early Ordovician Fezouata Biota, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460: 75–86. https://doi. org/10.1016/j.palaeo.2016.05.018. Boucot, Arthur, and George Poinar. 2010. Fossil Behavior Compendium. Boca Raton: CRC Press. Brasier, Martin D. 2010. Darwin’s Lost World: The Hidden History of Animal Life. Oxford: Oxford University Press. Briggs, Derek, and Jean-Bernard Caron. 2017. A Large Cambrian Chaetognath with Supernumerary Grasping Spines. Current Biology 27 (16): 2536–2543.e1. https://doi.org/10.1016/j. cub.2017.07.003. Briggs, Derek, and Peter R. Crowther. 2001. Palaeobiology II. Oxford: Blackwell Science. Briggs, Derek, et al. 1994. The Fossils of the Burgess Shale. Washington, DC: Smithsonian Institution Press. ———. 2016. Bivalved Arthropods from the Middle Ordovician Winneshiek Lagerstätte, Iowa, USA. Journal of Paleontology 89 (6): 991–1006. Britt, Brooks B., Daniel J. Chure, et al. 2018. Caelestiventus hanseni gen. et sp. nov. Extends the Desert-Dwelling Pterosaur Record Back 65 Million Years. Nature Ecology & Evolution | SN: 2397–334X. https://doi.org/10.1038/s41559-018-0627-y. https://www.nature.com/articles/ s41559-018-0627-y. Brown, Caleb M., et al. 2017. An Exceptionally Well-Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics. Current Biology 27 (16): 2514–2521.e3. https://doi.org/10.1016/j.cub.2017.06.071. Brusatte, Stephen, and Zhe-Xi Luo. 2016. Ascent of the Mammals. Scientific American 314 (6): 30–35. Brusca, Richard, and Gary J. Brusca. 1990. Invertebrates. Oxford: Sinauer Associates. Buffetaut, Eric. 2005. A New Sauropod Dinosaur with Prosauropod-Like Teeth from the Middle Jurassic of Madagascar. Bulletin de la Societé Géologique de France 176 (5): 467–473. Burnham, David A. et al. 2000. Remarkable New Bird-Like Dinosaur from the Upper Cretaceous of Montana. U. of Kansas Paleontological Contributions, no. 13, March 2000. Burrow, Carole J., and Michael A. Murphy. 2016. Early Devonian Vertebrates from the Northern Roberts Mountains, Nevada. Journal of Paleontology 89: 734–740. Butterfield, Nicholas J. 2000. Bangiomorpha pubescens: Implications for the Evolution of Sex, Multicellularity, and the Mesoproterozoic/Neoproterozoic Radiation of Eukaryotes. Paleobiology 1. https://doi.org/10.1666/0094-373(2000)026. Cabreira, Sergio F., et al. 2016. A Unique Late Triassic dinosauromorph Assemblage Reveals Dinosaur Ancestral Anatomy and Diet. Current Biology 26: 3090–3095. https://doi. org/10.1016/j.cub.2016.09.040. Carlson, Sandra J., and Lindsey Leighton. 2001. The Phylogeny and Classification of Rhynchonelliformea. In Brachiopods Ancient and Modern, ed. Carlson, 27–51. Carlson, Sandra J., and Michael Sandy, eds. 2001. Brachiopods Ancient and Modern: A Tribute to G. Arthur Cooper, Paleontological Society Paper No. 7. Pittsburgh: Paleontological Society. Caron, Jean-Bernard, et al. 2014. A New Phyllopod Bed-Like Assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5: 3210. https://doi.org/10.1038/ ncomms4210. Carpenter, Kenneth. 1999. Eggs, Nests, and Baby Dinosaurs: A Look at Dinosaur Reproduction. Bloomington: Indiana University Press. Carroll, Robert L. 1988. Vertebrate Paleontology and Evolution. New York: W.H. Freeman and Co. ———. 1997. Patterns and Processes of Vertebrate Evolution. Cambridge University Press. ———. 2009. The Rise of Amphibians: 365 Million Years of Evolution. Baltimore: Johns Hopkins University Press. Chang, Mee-Mann, et al. 2008. The Jehol Fossils. Amsterdam: Academic. Bibliography 461 Chiappé, Luis, and Lawrence Witmer, eds. 2002. Mesozoic Birds. Berkeley: University of California Press. Chure, Daniel, et al. 2010. First Complete Sauropod Dinosaur Skull from the Cretaceous of the Americas and the Evolution of Sauropod Dentition. Naturwissenschaften 97 (4): 379–391. https://doi.org/10.1007/s00114-010-0650-6. Clack, Jennifer. 2012. Gaining Ground: The Origin and Evolution of Tetrapods. 2nd ed. Bloomington: Indiana University Press. Clack, Jennifer, Per Ahlberg, Henning Blom, and Sarah Finney. 2012. A New Genus of Devonian Tetrapod from North-East Greenland, with New Information on the Lower Jaw of Ichthyostega. Palaeontology 55 (1): 73–86. https://doi.org/10.1111/j.1475-4983.2011.01117.x. Clack, Jennifer, et al. 2016. Phylogenetic and Environmental Context of a Tournaisian Tetrapod Fauna. Nature Ecology & Evolution 1 (0002). https://doi.org/10.1038/s41559-016-0002. Clark, John, and Stella Stiegeler. 2000. The Facts on File Dictionary of Earth Sciences. New York: Infobase Publishing. Clarke, Tom. 2002. Oldest Fossil Footprints on Land. Nature 30: 2002. https://doi.org/10.1038/ news020429-2. Clarkson, E.N.K. 1998. Invertebrate Palaeontology and Evolution. 4th ed. Oxford: Wiley-Blackwell. Cleal, Christopher J., and Barry A. Thomas. 1999. Plant Fossils. Woodbridge: Boydell Press. ———. 2010. Botanical Nomenclature and Plant Fossils. Taxon 59: 261–268. Clemens, William A. 2011. New Morganucodontans from an Early Jurassic Fissure Filling in Wales (United Kingdom). Palaeontology 54: 5. https://doi.org/10.1111/j.1475-4983.2011.01094.x. Clement, Alice M., et al. 2018. Neurocranial Anatomy of an Enigmatic Early Devonian Fish Sheds Light on Early Osteichthyan Evolution. eLife 7: e34349. https://doi.org/10.7554/eLife.34349. Colbert, Edwin. 2001. Evolution of the Vertebrates. New York: Wiley. Conway Morris, Simon. 1998. The Crucible of Creation. Oxford: Oxford University Press. Copper, Paul. 2001. Originations and Extinctions in Brachiopods. In Brachiopods Ancient and Modern, ed. Carlson, 249–257. Cotton, Geoffrey. 1973. The Rugose Coral Genera. Amsterdam: Elsevier. Cowen, Richard. 2013. The History of Life. 5th ed. New York: Wiley. Davidson, Jane P. 2008. A History of Paleontology Illustration. Bloomington: Indiana University Press. Dawkins, Richard, and Yan Wong. 2016. The Ancestor’s Tale: A Pilgrimage to the Dawn of Life. London: Weidenfeld and Nicolson. Deméré, Thomas, et al. 2008. Morphological and Molecular Evidence for a Stepwise Evolutionary Transition from Teeth to Baleen in Mysticete Whales. Systematic Biology 57 (1): 15–37. DePalma, Robert A., Jan Smit, David A. Burnham, Klaudia Kuiper, Phillip L. Manning, Anton Oleinik, Peter Larson, Florentin J. Maurrasse, Johan Vellekoop, Mark A. Richards, Loren Gurche, and Walter Alvarez. 2019. A Seismically Induced Onshore Surge Deposit at the KPg Boundary, North Dakota. PNAS. , published ahead of print April 1, 2019. https://doi. org/10.1073/pnas.1817407116. Dixon, Douglas. 2016. The Complete Illustrated Encyclopedia of Dinosaurs and Other Prehistoric Creatures. London: Hermes House. Donovan, S.K. 1994. The Palaeontology of Trace Fossils. New York: Wiley. Donovan, S.K., and C.R.C.
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Autecology of the Sunda Pangolin (Manis Javanica) in Singapore
    AUTECOLOGY OF THE SUNDA PANGOLIN (MANIS JAVANICA) IN SINGAPORE LIM T-LON, NORMAN (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2007 An adult male Manis javanica (MJ17) raiding an arboreal Oceophylla smaradgina nest. By shutting its nostrils and eyes, the Sunda Pangolin is able to protect its vulnerable parts from the powerful bites of this ant speces. The scales and thick skin further reduce the impacts of the ants’ attack. ii ACKNOWLEDGEMENTS My supervisor Professor Peter Ng Kee Lin is a wonderful mentor who provides the perfect combination of support and freedom that every graduate student should have. Despite his busy schedule, he always makes time for his students and provides the appropriate advice needed. His insightful comments and innovative ideas never fail to impress and inspire me throughout my entire time in the University. Lastly, I am most grateful to Prof. Ng for seeing promise in me and accepting me into the family of the Systematics and Ecology Laboratory. I would also like to thank Benjamin Lee for introducing me to the subject of pangolins, and subsequently introducing me to Melvin Gumal. They have guided me along tremendously during the preliminary phase of the project and provided wonderful comments throughout the entire course. The Wildlife Conservation Society (WCS) provided funding to undertake this research. In addition, field biologists from the various WCS offices in Southeast Asia have helped tremendously throughout the project, especially Anthony Lynam who has taken time off to conduct a camera-trapping workshop.
    [Show full text]
  • The Impact of Locomotion on the Brain Evolution of Squirrels and Close Relatives ✉ Ornella C
    ARTICLE https://doi.org/10.1038/s42003-021-01887-8 OPEN The impact of locomotion on the brain evolution of squirrels and close relatives ✉ Ornella C. Bertrand 1 , Hans P. Püschel 1, Julia A. Schwab 1, Mary T. Silcox 2 & Stephen L. Brusatte1 How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in 1234567890():,; trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene- Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains. 1 School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK. 2 Department of Anthropology, University of Toronto Scarborough, ✉ Toronto, ON, Canada. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:460 | https://doi.org/10.1038/s42003-021-01887-8 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01887-8 hat ecological and evolutionary factors affect brain size striking differences between living sciurids and aplodontiids raise in mammals? Studies have assessed the impact of the question of how this modern rodent assemblage emerged.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Copertina Guida Ai TRILOBITI V3 Esterno
    Enrico Bonino nato in provincia di Bergamo nel 1966, Enrico si è laureato in Geologia presso il Dipartimento di Scienze della Terra dell'Università di Genova. Attualmente risiede in Belgio dove svolge attività come specialista nel settore dei Sistemi di Informazione Geografica e analisi di immagini digitali. Curatore scientifico del Museo Back to the Past, ha pubblicato numerosi volumi di paleontologia in lingua italiana e inglese, collaborando inoltre all’elaborazione di testi e pubblicazioni scientifiche a livello nazonale e internazionale. Oltre alla passione per questa classe di artropodi, i suoi interessi sono orientati alle forme di vita vissute nel Precambriano, stromatoliti, e fossilizzazioni tipo konservat-lagerstätte. Carlo Kier nato a Milano nel 1961, Carlo si è laureato in Legge, ed è attualmente presidente della catena di alberghi Azul Hotel. Risiede a Cancun, Messico, dove si dedica ad attività legate all'ambiente marino. All'età di 16 anni, ha iniziato una lunga collaborazione con il Museo di Storia Naturale di Milano, ed è a partire dal 1970 che prese inizio la vera passione per i trilobiti, dando avvio a quella che oggi è diventata una delle collezioni paleontologiche più importanti al mondo. La sua instancabile attività di ricerca sul terreno in varie parti del globo e la collaborazione con professionisti del settore, ha permesso la descrizione di nuove specie di trilobiti ed artropodi. Una forte determinazione e la costruzione di un nuovo complesso alberghiero (AZUL Sensatori) hanno infine concretizzzato la realizzazione
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK, N.Y
    NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK, N.Y. 10024 U.S.A. NUMBER 2626 JUNE 30, 1977 JOHN H. WAHLERT Cranial Foramina and Relationships of Eutypomys (Rodentia, Eutypomyidae) AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2626, pp. 1-8, figs. 1-3, table 1 June 30, 1977 Cranial Foramina and Relationships of Eutypomys (Rodentia, Eutypomyidae) JOHN H. WAHLERT1 ABSTRACT Derived characters of the sphenopalatine, lies had common ancestry in a stem species from interorbital, and dorsal palatine foramina are which no other rodent groups are descended. The shared by the Eutypomyidae and Castoridae. two families may be included in a monophyletic These support the hypothesis that the two fami- superfamily, Castoroidea. INTRODUCTION Eutypomys is an extinct sciuromorphous gave more characters shared with castorids; he, rodent known in North America from strata that too, found many features in common with the range in age from latest Eocene to early Miocene. ischyromyoids. Wood noted the similarity of The genus was named by Matthew (1905) based molar crown pattern to that of Paramys and ex- on the species Eutypomys thomsoni. "Progres- plained it as a parallelism that possibly indicates sive" characters of the teeth and hind feet led relationship. Wilson (1949b) pointed out that the Matthew to ally it with the beaver family, Cas- dental pattern of Eutypomys is more like that of toridae. He pointed out that it retains many sciuravids than that of paramyids.
    [Show full text]
  • X'tjiieficanjusetim
    X'tJiieficanJusetim PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N. Y. I0024 NUMBER 2490 MAY 9, I972 High-level Strata Containing Early Miocene Mammals on the Bighorn Mountains, Wyoming BY MALCOLM C. MCKENNA1 AND J. D. LOVE2 ABSTRACT Fossil mammals of early Miocene age have been found in strata composing Darton's Bluff on the crest of the Bighorn Mountains in the Hazelton Peak Quadrangle, Johnson County, Wyoming. Dating the host strata provides a refer- ence datum for the reconstruction of regional sedimentation during early Miocene time and for determination of the maximum age of epeirogenic uplift. As a result of regional aggradation, the Bighorn Basin was filled with sediments. These buried the rugged peaks and canyons of the Bighorn Mountains up to a level corre- sponding to the present 9000-foot altitude during early Miocene time. The lower Miocene and older rocks are beveled by the subsummit surface, a remarkably flat and even surface of Miocene or Pliocene age. Excavation of the Bighorn and Powder River basins and exhumation of the Bighorn Mountains must have been accomplished during the relatively short interval of late Cenozoic time after the subsummit surface was cut. INTRODUCTION Darton (1906) described and mapped several occurrences of essentially flat-lying Cenozoic strata at altitudes of about 9000 feet; these strata rest on a surface of high to moderate relief, cut in the Precambrian and 1 Frick Curator, Department of Vertebrate Paleontology, the American Museum of Natural History. 2 United States Geological Survey, Laramie, Wyoming. Publication authorized by the Director, U.
    [Show full text]
  • IL Libro Del Museo by Enrico Bonino and Carlo Kier Is a Pleasant Treat
    Trilobite_book_Copertina_Hi_res2.pdf 1 11/09/2009 18:24:55 Mu seu With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, to m ck th a e Trilobiti – IL libro del Museo by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images B P ● a of more than 500 diverse species of trilobites, mostly from the authors’ own collections. A s t Z Specimens amply represent famous trilobite localities around the world and typify forms from most of the 250-million-year U L ● history of trilobites. Numerous specimens are masterpieces of modern professional preparation. I eagerly await a promised TRILOBITI S e l n e s t English edition. Carlo Kier a o tori H Richard A. Robison Bonino Enrico Professor Emeritus University of Kansas IL libro del Museo L’idea di colmare una lacuna italiana di un libro scritto in lingua patria sui trilobiti non può che trovare il mio più incoraggiante appoggio. Alla base di tutto questo sta non solo la reciproca stima, ma una vera passione per gli argomenti trattati. Se a questo si aggiunge una buona competenza informatica di elaborazione dati ed un buon gusto estetico non può che nascere un buon libro che spicca rispetto a tanti per la dovizia di belle immagini corroborate da una scelta puntuale ed esplicativa al massimo dell’eccellenza. Prof. Maurizio Gnoli Titolare del corso di “Paleontologia” e “Paleontologia dei Vertebrati” Università degli Studi di Modena-Reggio Emilia. C M Y CM MY CY CMY Enrico Bonino nato in provincia di Bergamo nel 1966, Enrico si è laureato in Geologia presso il Dipartimento di K Scienze della Terra dell'Università di Genova.
    [Show full text]
  • 2014BOYDANDWELSH.Pdf
    Proceedings of the 10th Conference on Fossil Resources Rapid City, SD May 2014 Dakoterra Vol. 6:124–147 ARTICLE DESCRIPTION OF AN EARLIEST ORELLAN FAUNA FROM BADLANDS NATIONAL PARK, INTERIOR, SOUTH DAKOTA AND IMPLICATIONS FOR THE STRATIGRAPHIC POSITION OF THE BLOOM BASIN LIMESTONE BED CLINT A. BOYD1 AND ED WELSH2 1Department of Geology and Geologic Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 U.S.A., [email protected]; 2Division of Resource Management, Badlands National Park, Interior, South Dakota 57750 U.S.A., [email protected] ABSTRACT—Three new vertebrate localities are reported from within the Bloom Basin of the North Unit of Badlands National Park, Interior, South Dakota. These sites were discovered during paleontological surveys and monitoring of the park’s boundary fence construction activities. This report focuses on a new fauna recovered from one of these localities (BADL-LOC-0293) that is designated the Bloom Basin local fauna. This locality is situated approximately three meters below the Bloom Basin limestone bed, a geographically restricted strati- graphic unit only present within the Bloom Basin. Previous researchers have placed the Bloom Basin limestone bed at the contact between the Chadron and Brule formations. Given the unconformity known to occur between these formations in South Dakota, the recovery of a Chadronian (Late Eocene) fauna was expected from this locality. However, detailed collection and examination of fossils from BADL-LOC-0293 reveals an abundance of specimens referable to the characteristic Orellan taxa Hypertragulus calcaratus and Leptomeryx evansi. This fauna also includes new records for the taxa Adjidaumo lophatus and Brachygaulus, a biostratigraphic verifica- tion for the biochronologically ambiguous taxon Megaleptictis, and the possible presence of new leporid and hypertragulid taxa.
    [Show full text]
  • Late Silurian Trilobite Palaeobiology And
    LATE SILURIAN TRILOBITE PALAEOBIOLOGY AND BIODIVERSITY by ANDREW JAMES STOREY A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Geography, Earth and Environmental Sciences University of Birmingham February 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Trilobites from the Ludlow and Přídolí of England and Wales are described. A total of 15 families; 36 genera and 53 species are documented herein, including a new genus and seventeen new species; fourteen of which remain under open nomenclature. Most of the trilobites in the British late Silurian are restricted to the shelf, and predominantly occur in the Elton, Bringewood, Leintwardine, and Whitcliffe groups of Wales and the Welsh Borderland. The Elton to Whitcliffe groups represent a shallowing upwards sequence overall; each is characterised by a distinct lithofacies and fauna. The trilobites and brachiopods of the Coldwell Formation of the Lake District Basin are documented, and are comparable with faunas in the Swedish Colonus Shale and the Mottled Mudstones of North Wales. Ludlow trilobite associations, containing commonly co-occurring trilobite taxa, are defined for each palaeoenvironment.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]