Differential Equations Sanchez
Total Page:16
File Type:pdf, Size:1020Kb
Differential Equations Sanchez Part II -Summary 6 Annihilators
Annihilators. An annihilator of a function y=f(t) is a linear differential P(D) that satisfies the condition P(D)[f(t)] =0. This is the same as saying that f(t) is a solution of the homogenous differential equation P(D)f(t)=0.
Example: the homogeneous solution of the linear differential equation y 4y 0 is y c1 c2 sin 2t c3 cos 2t. Therefore an annihilator of y 5 7 sin 2t 4cos 2t is D D2 1 Note : y 4y 0 is the same as DD2 1 y 0
Problem 1. Find an annihilator for each of the following functions: Function Annihilator 1. y 5 2x 3ex 4sin x 1. D2 D 1(D2 1) 2. y e2x cosh x sinh x 2.D-3 ex ex ex ex e2x e2x ex e3x 2 2 3. y xe2x cos3x 3. The characteristic roots are 2 3i double roots. 2 D2 4D 13 4. y t 2e2t et 4tet 4. (D 1)2 (D 2)3 5. y 3 4x sin x 5. D2 (D2 1) 6. y 3ex 5e2x 6. (D-1)(D+2) 7. 2t +5 7. D2 8. t 2et 8. D 13 9. t 2et cos 5t 9. The characteristic roots are 1 5i, triple roots. 3 D2 2D 26 10. t 2e2t 5t 2et 7 sin 2t 10. D2 D 2(D 1)3 D2 4 11. 1 6x 2x3 11. D4
2 x 2 12. 3x xe cos 2x 12. D3 D2 2D 5
-1- 13. ex 2xex x2ex 13. (D 1)(D 1)3
2 14. D(D 1)(D 2) 14. 2 ex 4 4ex e2x 1 cos 2x 1 1 2 15. cos2 x cos 2x 15. D(D 4) 2 2 2 ex ex 3 3 2 3 16. x2 sinh x x2 16. (D 1) (D 1 D 1 2
Finding the general form of the particular solution of a non-homogeneous linear differential equation by using annihilators.
Step 1. Express the DE in linear differential form, that is, L(y)=g(x)
Step 2. Find the homogeneous solution (complementary solution) of the differential equation, that is find the general solution of L(y)=0
Step 3.. Find an annihilator L1for g(x), that is L1(g(x)=0
Step 4. Operate on both sides of the non-homogeneous equation with the annihilator L1, that is, L1L(y) L1(g(x) 0
Step 5. Find the homogeneous solution (complementary solution) of the differential
equation L1L(y) 0
Step 6. The general for the particular solution of L(y) g(x) is given by e lim inating from the solution of L1L(y) 0, the terms which belong to the solution of L(y) 0 Problem 2. Find the general form of a particular solution of the following differential equation. a) D(D 1)2 y 5 x x x Yh c1 c2e c2xe An annihilator for 5 t is D2 D3(D 1)2 y 0 2 x x y k1 k 2x k3x k 4e k5xe 2 Yp Ax Bx
-2- t t 2t b) (D 2)(D 1)y 3e 5 Yh c1e c2e An annihilator for 3et 5 is D(D 1) D(D 1)(D 2)(D 1)y D(D 1)et 5 0 t t 2t t y k1 k 2e k 3e k 4e Yp A Be 2 2t t 2t 2t c) D(D 1)(D 2) y 5te Yh c1 c2e c3e c4xe An annihilator is (D 2)2 D(D 1)(D 2)4 y t 2t 2t 2 2t 3 2t y c1 c2e c3e c4xe c5x e c6x e 2 2t 3 2t Yp Ax e cBx e d) D2 9D2 2D 2y 5cos3t 3et sin t 2 4 4(1)(2) 2 2i a2 2a 2 0 a 1 i 2 2 t Yh c1 sin 3t c2 cos 3t e c3 sin t c4 cos t An annihilator for 5cos 3t 3et sin t is D2 9D2 2D 2 2 2 D2 9 D2 2D 2 y y c1 sin 3t c2 cos3t xc3 sin 3t c4 cos3t t t e c5 sin t c6 cos t xe c7 sin t c8 cos t t Yp xA sin 3t B cos 3t xe Csin t Dcos t 2 e) 2D3 3D2 3D 2y ex ex (D 1)(D 2)(2D 1)y e2x 2 e2x 1 x x 2x 2 Yh c1e c2e c3e An annihilator for e2x 2 e2x is D(D 1)(D 1) 1 x 2 x x 2x 2 D(D 1) (D 2)(2D 1)y 0 y c1 c2e c3xe c4e c5e x Yp A Bxe
-3- Problem 3. Solve the IVP y -5y x - 2 2 5x D 5Dy x 2 D(D 5)y x 2 Yh C1 C2e An annihilator for x 2 is D2 D3 (D 5)y 0 2 5x 2 y c1 c2x c3x c4e Yp Ax Bx
Yp A 2Bx, Yp 2B 2B 5A 2Bx x 2 1 5A 2B 2 B 9 1 10 Y x x2 9 p 10B 1 A 25 10 25 9 1 Y C C e5x x x2 1 2 25 10
. Problem 4. Solve the given differential equation by un-determinate coefficients y y 12y e4x 2 4x 4x 3x 4x D D 12y e D 4)(D 3y e Yh c1e c2e An annihilator for e4x is (D 4) 2 3x 4x 4x D 4) (D 3y 0 y c1e c2e c3xe 4x 4x 4x 4x 4x Yp Axe , Yp Ae 4Axe , Yp 8Ae 16xe y y 12y e4x 8Ae4x 16xe4x Ae4x 4Axe4x 12Axe4x e4x 1 1 1 7Ae4x e4x A Y xe4x y c e3x c e4x xe4x 7 p 7 1 2 7
Problem 5. Solve the DE of problem 3 by using the exponential shifting. (D2 D 12)y e4x e4x (D 4)(D 3)y 1 (D 4 4)(D 4 3)e4x y 1 D(D 7)e4xy 1 (D 7)e4xy x c e7x (D 7)e4xy xe7x ce7x (D 7 7)e7xe4xy xe7x ce7x De3x y xe7x ce7x 1 1 c 1 e3xy xe7x e7x e7x c e3xy xe7x c e7x c 7 49 7 2 7 1 2 1 y xe4x c e4x c e3x 7 1 2
-4-