Differential Equations Sanchez

Differential Equations Sanchez

<p> Differential Equations Sanchez Part II -Summary 6 Annihilators</p><p>Annihilators. An annihilator of a function y=f(t) is a linear differential P(D) that satisfies the condition P(D)[f(t)] =0. This is the same as saying that f(t) is a solution of the homogenous differential equation P(D)f(t)=0.</p><p>Example: the homogeneous solution of the linear differential equation y  4y  0 is y  c1  c2 sin 2t  c3 cos 2t. Therefore an annihilator of y  5  7 sin 2t  4cos 2t is D D2 1 Note : y  4y  0 is the same as DD2 1 y  0</p><p>Problem 1. Find an annihilator for each of the following functions: Function Annihilator 1. y  5  2x  3ex  4sin x 1. D2 D 1(D2 1) 2. y  e2x cosh x  sinh x 2.D-3  ex  ex ex  ex   e2x    e2x ex  e3x    2 2  3. y  xe2x cos3x 3. The characteristic roots are 2  3i double roots. 2 D2  4D 13 4. y  t 2e2t  et  4tet 4. (D 1)2 (D  2)3 5. y  3 4x  sin x 5. D2 (D2 1) 6. y  3ex  5e2x 6. (D-1)(D+2) 7. 2t +5 7. D2 8. t 2et 8. D 13 9. t 2et cos 5t 9. The characteristic roots are 1 5i, triple roots. 3 D2  2D  26 10. t  2e2t  5t 2et  7 sin 2t 10. D2 D  2(D 1)3 D2  4 11. 1 6x  2x3 11. D4</p><p>2 x 2 12. 3x  xe cos 2x 12. D3 D2  2D  5</p><p>-1- 13. ex  2xex  x2ex 13. (D 1)(D 1)3</p><p>2 14. D(D 1)(D  2) 14. 2  ex   4  4ex  e2x 1 cos 2x 1 1 2 15. cos2 x    cos 2x 15. D(D  4) 2 2 2  ex  ex  3 3 2 3 16. x2 sinh x  x2   16. (D 1) (D 1  D 1    2 </p><p>Finding the general form of the particular solution of a non-homogeneous linear differential equation by using annihilators.</p><p>Step 1. Express the DE in linear differential form, that is, L(y)=g(x) </p><p>Step 2. Find the homogeneous solution (complementary solution) of the differential equation, that is find the general solution of L(y)=0</p><p>Step 3.. Find an annihilator L1for g(x), that is L1(g(x)=0</p><p>Step 4. Operate on both sides of the non-homogeneous equation with the annihilator L1, that is, L1L(y)  L1(g(x)  0</p><p>Step 5. Find the homogeneous solution (complementary solution) of the differential </p><p> equation L1L(y)  0</p><p>Step 6. The general for the particular solution of L(y)  g(x) is given by e lim inating from the solution of L1L(y)  0, the terms which belong to the solution of L(y)  0 Problem 2. Find the general form of a particular solution of the following differential equation. a) D(D  1)2 y  5  x  x x  Yh  c1  c2e  c2xe An annihilator for 5  t is D2  D3(D  1)2 y  0 2 x  x  y  k1  k 2x  k3x  k 4e  k5xe 2  Yp  Ax  Bx</p><p>-2- t t 2t b) (D  2)(D 1)y  3e  5  Yh  c1e  c2e An annihilator for 3et  5 is D(D 1)  D(D 1)(D  2)(D 1)y  D(D 1)et  5 0 t t 2t t  y  k1  k 2e  k 3e  k 4e  Yp  A  Be 2 2t t 2t 2t c) D(D 1)(D  2) y  5te  Yh  c1  c2e  c3e  c4xe An annihilator is (D  2)2  D(D 1)(D  2)4 y t 2t 2t 2 2t 3 2t  y  c1  c2e  c3e  c4xe  c5x e  c6x e 2 2t 3 2t  Yp  Ax e  cBx e d) D2  9D2  2D  2y  5cos3t  3et sin t 2  4  4(1)(2) 2  2i a2  2a  2  0  a    1 i 2 2 t  Yh  c1 sin 3t  c2 cos 3t  e c3 sin t  c4 cos t An annihilator for 5cos 3t  3et sin t is D2  9D2  2D  2 2 2  D2  9 D2  2D  2 y  y  c1 sin 3t  c2 cos3t  xc3 sin 3t  c4 cos3t t t  e c5 sin t  c6 cos t xe c7 sin t  c8 cos t t  Yp  xA sin 3t  B cos 3t xe Csin t  Dcos t 2 e) 2D3  3D2  3D  2y  ex  ex   (D 1)(D  2)(2D 1)y  e2x  2  e2x 1 x x 2x 2  Yh  c1e  c2e  c3e An annihilator for e2x  2  e2x is D(D 1)(D 1) 1 x 2 x x 2x 2  D(D 1) (D  2)(2D 1)y  0  y  c1  c2e  c3xe  c4e  c5e x  Yp  A  Bxe</p><p>-3- Problem 3. Solve the IVP y -5y  x - 2 2 5x D  5Dy  x  2  D(D  5)y  x  2  Yh  C1  C2e An annihilator for x  2 is D2  D3 (D  5)y  0 2 5x 2  y  c1  c2x  c3x  c4e  Yp  Ax  Bx</p><p>Yp  A  2Bx, Yp  2B  2B  5A  2Bx  x  2  1  5A  2B  2 B   9 1   10  Y  x  x2   9 p  10B  1  A  25 10  25 9 1  Y  C  C e5x  x  x2 1 2 25 10</p><p>. Problem 4. Solve the given differential equation by un-determinate coefficients y  y 12y  e4x 2 4x 4x 3x 4x D  D 12y  e  D  4)(D  3y  e  Yh  c1e  c2e An annihilator for e4x is (D  4) 2 3x 4x 4x  D  4) (D  3y  0  y  c1e  c2e  c3xe 4x 4x 4x 4x 4x  Yp  Axe , Yp  Ae  4Axe , Yp  8Ae 16xe y  y 12y  e4x  8Ae4x 16xe4x  Ae4x  4Axe4x 12Axe4x  e4x 1 1 1  7Ae4x  e4x  A   Y  xe4x  y  c e3x  c e4x  xe4x 7 p 7 1 2 7</p><p>Problem 5. Solve the DE of problem 3 by using the exponential shifting. (D2  D 12)y  e4x  e4x (D  4)(D  3)y  1  (D  4  4)(D  4  3)e4x y 1  D(D  7)e4xy 1  (D  7)e4xy x  c  e7x (D  7)e4xy xe7x  ce7x  (D  7  7)e7xe4xy xe7x  ce7x  De3x y xe7x  ce7x 1 1 c 1  e3xy  xe7x  e7x  e7x  c  e3xy  xe7x  c e7x  c 7 49 7 2 7 1 2 1  y  xe4x  c e4x  c e3x 7 1 2</p><p>-4-</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us