Why Hematite Is Red: Correlation of Optical Absorption Intensities and Magnetic Moments of Fe3+ Minerals

Total Page:16

File Type:pdf, Size:1020Kb

Why Hematite Is Red: Correlation of Optical Absorption Intensities and Magnetic Moments of Fe3+ Minerals Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Why hematite is red: Correlation of optical absorption intensities 3 and magnetic moments of Fe + minerals GEORGE R. ROSSMAN Division of Geological and Planetary Sciences. California Institute of Technology, Pasadena, California 91125, U.S.A. 3 Abstract-Structures with Fe + shared through oxo- or hydroxyl-groups have antiferromagnetic interactions. Such interactions result in enhanced intensity of the Fe3+ optical absorption bands which in some systems can be as great as a factor of 100 compared to isolated, octahedrally 3 coordinated Fe + ions. A comparison is presented between the intensity of the lowest energy crystal- 3 field band of Fe + minerals and their magnetic moments which demonstrates the dependence of optical absorption intensity and antiferromagnetic interactions in the host phase. Hematite, which is usually responsible for the red color of geological materials, owes its intense color to these magnetic interactions. INTRODUCTION calculations on clusters with Fe3+-0 and Fe3+ -OH OXIDIZED IRON (Fe3+) is associated with the red units. They found that the Fe3+ -OH bond was more color which is commonly observed in many soils, ionic and had a smaller spin-polarization than the sedimentary rocks and weathering products (BLOD. Fe3+-0 bond. This gave rise to much weaker mag- GETTet al., 1993). In these materials, Fe3+, primar- netic exchange (superexchange) between hydroxyl- 3 ily in the form of finely disseminated hematite bridged Fe + cations compared to oxo-bridged Fe3+ (Fe203), is an intense pigment. The prevalence of cations. In addition to the effects discussed by hematite as a red pigment in geological materials Sherman on the internal magnetic hyperfine fields leads to the common association of red color with observed in the Mossbauer spectra, superexchange oxidized iron in general. interactions produce the major intensifications of 3 On the other hand, a variety of other Fe3+ the Fe + ligand field transitions in the optical spec- minerals and chemical compounds are pale col- tra (ROSSMAN, 1975, 1976a,b). ored. Many examples exist of pale colored Fe3+ This paper presents empirical correlations be- minerals including light greenish-yellow sili- tween the intensities of optical absorption bands cates such as andradite garnet, and lavender and the magnetic susceptibility of Fe3+ minerals. phosphates and sulfates such as strengite and These observations provide experimental support coquimbite. A problem has been to reconcile the for the concepts developed by SHERMAN (1985). intense color of hematite and related hydrous As part of these correlations, the special case of iron oxides with the pale color of many other the color of hematite and other hydrous iron oxides 3 Fe + minerals and compounds. is considered. ROSSMAN (1975, 1976a,b) noted that the in- tensity of color per unit of Fe3+ ions in iron EXPERIMENTAL sulfates increases dramatically when the iron Magnetic and optical data were taken from the litera- ions are joined through shared oxide and hy- ture or were determined by the methods described in droxide ions (shared edges or vertices of coordi- ROSSMAN (1975). Both new and reviewed data are pre- sented in Table 1. nation polyhedra). He observed that such sys- tems are antiferromagnetic and suggested that, in these systems, the intensity of color was re- RESULTS AND DISCUSSION lated to the extent of magnetic interaction. Fur- The optical absorption spectrum of Fe3+ in an thermore, ferric sulfate systems joined through octahedral site isolated from other Fe3+' octahedra shared oxide ions often show much greater mag- consists of two broad bands at lower energies (la- netic interaction and stronger color than those beled 4T1g and 4T2g in order of increasing energy) joined through hydroxide ions. and a pair of bands, often overlapping near 440 SHERMAN (1985) and SHERMAN and WAITE nm, labeled (4A1g,4Eg). The light not absorbed by (1985) discussed the results of molecular orbital these bands determines the color of Fe3+ minerals. 23 24 G. R. Rossman Table 1. Spectral and magnetic data Sample Formula ",(TIs) 10 ",(A Ig,4Eg) 10 µ Regular Octahedra 1 andradite Ca3FeiSi04)3 854 0.08 440 1.5 Distorted Octahedra 2.0 5.87 2 coquimbite FeiS04h9H2O 778 0.18 427 0.34 423 6.5 3 phosposiderite FeP04·2H2O 746 Dimer 36 4.70 4 magnesiocopiapite MgFe4(S04)6{OH)2'20H20 864 1.7 430 Chains 33 3.8 5 butlerite Fe(S04)(OH)'2H2O 920 2.4 424 426 28 3.3 6 parabutlerite Fe(S04)(OH)'2H2O 912 2.5 428 55 7 stewartite MnFeiP04h(OH)2·8H20 880 2.3 423 11 3.72 8 fibroferrite Fe(S04)(OH)'5H2O 840 1.9 432 96 3.97 9 botryogen MgFe(S04h(OH)'7H2O 939 3.4 Clusters 3.42 10 metavo1tine K2NlI{\FeFe6(S04)1202'18H20 855 5.5 464 66 90 2.53 11 amarantite Fe(S04)(OH)'3H2O 866 12.7 442 8.4 5.13 12 1eucophosphite KFe2(P04h(OH)'2H2O 800 0.78 441 446 19 4.71 13 pharmocosiderite KFeiAs04)J(OH)4'7H20 820 0.5 Extended Structures 2.06 14 hematite Fe203 855 15.3 3.23 15 goethite FeO(OH) 915 7.0 - 3.01 16 1epidocrocite FeO(OH) 918 13.5 1.95 17 bernalite Fe(OH)3 885 0.12 431 Wavelengths of absorption bands ("') in nm; molar absorption coefficients (c) in l/mol- ern"; effective magnetic moments (µ) in Bohr magnetons at approximately 295°C. Sources of data: 1 (MAo and BELL, 1974); 2-9 (ROSSMAN,1975, 1976a,b); 10 (previously unpublished); 11,12 (ROSSMAN,1976b); 13 (previously unpublished); 14 (BAILEY,1960; HOFERet al., 1946); 15,16 (MAo et al. 1974, HOFERet al., 1946); 17 (MCCAMMONet al., 1995) Andradite garnet, Ca3Fe2(Si04)3, is a mineral con- (0001) plane) is compared to the spectrum of an- 3 taining such isolated octahedral Fe + sites. The dradite. The spectra are normalized for density and general features of the spectrum of andradite (Fig. iron concentration such that they are presented for 3 1) are typical for Fe3+ in octahedral coordination in equal amounts of Fe + in the sample path. From a variety of silicate, sulfate and phosphate minerals. this comparison, it can be seen that hematite has a The two broad bands at longer wavelengths (4TIg much greater absorption intensity than andradite. and 4T2g) have low intensity and do not produce The intense, deep red color of hematite is deter- strong colors in a thickness of a few millimeters mined by the narrow transmission window near and the more intense, sharp band near 440 nm is 750 nm. so far in the violet that it contributes little to the The absolute intensity of the bands is measured color of the mineral. in terms of the molar absorption coefficient, E, de- In hematite, all Fe3+ sites are adjacent to other fined by absorbance = E (llmol X cm ") X path Fe3+ sites. In Fig. 1 the hematite spectrum (in the (em) X concentration (moles/liter). The E value for Why hematite is red 25 1.2 Thus it is necessary to consider the correlation Hematite between intensity of absorption and the strength 1.0 of the magnetic interaction. For many minerals, the intensity of the (4AIg,4Eg) band is often dif- ~ 0.8 ficult to measure due to overlap with the tail of c ttl intense absorption bands in the ultraviolet. In -e 0.6 nearly all cases, the 4TIg band near 800 nm is o C/) unaffected by this tail. Its intensity is therefore .0 « 0.4 more amenable to quantification. The strength of the magnetic interaction can be measured 0.2 through the magnetic moment, derived from Andradite measurements of the mineral's bulk magnetic susceptibility. The effective magnetic moment 400 600 800 1000 1200 of Fe3+ ions isolated from anti-ferromagnetic interactions is about 5.9 Bohr magnetons. Wavelength, nm Strong antiferromagnetic interactions decrease this value to about 2.0 in the case of pairs of 3 FIG. 1. Comparison of the optical absorption spectra Fe + bridged by a nearly linear oxo-bridge of hematite and andradite garnet. The spectra have been et al., Ig normalized for density and Fe-concentration so that they (SCHUGAR 1972). The intensity of the 4T are presented for identical amounts of Fe in the sample band increases markedly as the magnetic mo- 3 path. ment per Fe + decreases due to magnetic ex- change interactions (Fig. 3). Although the con- cept is well established that absorption band intensification is related to magnetic interac- hematite is 15.3 in the 850 nm region compared to tions, Fig. 3 provides a quantitative demonstra- 0.08 for andradite. This increase of intensity of tion of this relationship and illustrates that there absorption by over two orders of magnitude cou- is some variation from a smooth trend, undoubt- pled with increased intensity of the higher energy edly caused by variations in the structural de- bands is responsible for the intense color of tails of the interacting Fe3+ sites. hematite. A visible manifestation of the importance of A general observation which follows from these magnetic interactions is the intensity of color these studies is that intense color and high ab- 3 of the host phases. If Fe + in the host mineral is sorption band intensity is associated with miner- free of magnetic interactions the mineral is usually als which have chains, clusters or extended net- pale yellow-green (typically silicates) or pale lav- 3 works of Fe + cations. This observation is ender (phosphates and sulfates). The reds and reinforced by Fig. 2 which illustrates that the browns usually associated with Fe3+are observed intensity of the 4TIg band is generally much greater for various clusterings of Fe3+ cations than for Fe3+in isolated, symmetrical or moder- ately distorted octahedra.
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Lts Ficez 5Coz7'a1ra
    ltS FicEz 5coZ7'a1ra he most valuable gem- Gem-quality red beryl on quality red beryl comes white devitri- from thc Wah Wah fied rhyolite Mountains of south- matrix. This western Utah (Fig. 1). sample mea- Red beryl occurs as a secondary sures 9 x 26 mm (O.35 x 1 mineral in topaz rhyolite. Market- in.l. (Photo by able crystals from the Wah Wah Sky Hall.) Mountains have been produced from the Violet Mine, operated on a limited scale since 1976 under the ownership of the Harris family of Delta, UT. From 1989 to 1995. oroduction from the mine amounted to more than $3 million with an inventory of several million dollars of unsold gems (Harris, 1995). In 7994, Kennecott Exploration leased the mine and surrounding claims to de- termine reserves and feasibility of gem recovery. Mining and explora- E.H. Christiansen and tion activity are continuing. J.D. Keith are proles- Previous work on red beryl has s0rs arld T.J. dealt mainly with crystallographic, Thompson is a student, chemical and optical properties of the crystals (Shigley and Foord, Ieparlment of Geohgy, 1984) with only general descriptions Brigham Yrung Univer- of the geology (Ream, 1979). How- sitt Brx 251 I l, Prlvn, ever. the conditions needed for for- mation of red beryl have not been UT 84fi[2 well constrained. It is generally pro- posed that beryl originates by pre- cipitation in fractures and vugs from high-temperature silica rhyolite and andesitic lava flows. gases as they are released from slowly cooled rhyolite Beginning about 23 Ma, the style and composition of lava.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Formation of Jarosite Minerals in the Presence of Seed Material H
    46th Lunar and Planetary Science Conference (2015) 1825.pdf FORMATION OF JAROSITE MINERALS IN THE PRESENCE OF SEED MATERIAL H. E. A. Brand1,2 N. V. Y. Scarlett2 and I. E. Grey2, 1Australian Synchrotron, 800 Blackburn Rd., Clayton South, VIC 3168, Australia. [email protected] 2CSIRO Mineral Resources, Box 312, Clayton, VIC 3187, Australia. Introduction: There has been a resurgence in interest Experimental method: Jarosite forms readily by co- in jarosite, (K,Na)Fe3(SO4)2(OH)6, and related precitation on gentle warming of an appropriate minerals since their detection on Mars by the MER solution. 2.25 g of Fe2(SO4)3.xH2O and 0.70 g of rover Opportunity [1]. In this context, the presence of K2SO4 were dissolved in 10 mls of deionized H2O. jarosite has been recognised as a likely indicator of Seed materials were diamond, hematite and goethite. water at the surface of Mars in the past and it is hoped Hematite and goethite are commonly found in that study of their formation mechanisms will provide association with natural jarosite deposits. The inclusion insight into the environmental history of Mars [2]. of diamond provides a baseline for the effect of an inert Jarosites are also of great importance to a range of seed material. These materials were added to the mineral processing and research applications. For jarosite starting-solutions to give 5 wt% seed. An example: they are used in the removal of iron species additional solution was prepared with no seed material from smelting processes; they form detrimentally in to provide a comparison set of data.
    [Show full text]
  • INCLUSIONS in AQUAMARINE from AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R
    NEW Danet G&G Fall 2012_Layout 1 9/27/12 11:31 AM Page 205 RAPID COMMUNICATIONS INCLUSIONS IN AQUAMARINE FROM AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R. Neuville, Olivier Beyssac, and Vincent Bourgoin grams of translucent to transparent beryl were pro- duced, as well as several tonnes of opaque material In January 2012, aquamarine crystals containing for industrial use. While only a very small percentage interesting inclusions were extracted from the Am- was suitable for faceting, several hundred aqua- batofotsikely area northwest of Antsirabe, Mada- marines in the 1–35 ct range have been cut. In April gascar. These specimens displayed various types 2012, one of the authors (FD) traveled to the locality of eye-visible and microscopic inclusions, and and obtained representative samples. some had an unusual form. Raman microspec- troscopy identified reddish brown plate lets as Location and Geologic Setting. The workings are lo- hematite, while ilmenite was found as black cated less than 1 km north of Ambatofotsikely (a village platelets, black needles, and distinctive dark gray now locally known as Ambatofotsy Carole), 22 km dendrites. Similar inclusions are known in beryl north-northwest of Ankazomiriotra, and 74 km north- from Brazil, India, Mozambique, and Sri Lanka. west of Antsirabe. The deposit is centered at coordinates 19°27.662¢S, 46°27.450¢E, at an elevation of 1,010 m. The site is accessed by a paved road (RN 34) from ining activity near the central Malagasy village Antsirabe to a point 16 km west of Ankazomiriotra. of Ambatofotsikely was first documented nearly From there, a trail extends 15 km to Ambatofotsikely.
    [Show full text]
  • Sapphire from Australia
    SAPPHIRES FROM AUSTRALIA By Terrence Coldham During the last 20 years, Australia has ew people realize that Australia is one of the major assumed a major role in the production of F producers of sapphire on the world market today. Yet a blue sapphire. Most of the gem material fine blue Australian sapphire (figure 1)competes favorably comes from alluvial deposits in the Anal<ie with blue sapphire from noted localities such as Sri Lanka, (central Queensland) and New England (northern New South Wales) fields. Mining and virtually all other hues associated with sapphire can be techniques range from hand sieving to found in the Australian fields (figure 2). In fact, in the highly mechanized operations. The rough is author's experience it is probable that 50% by weight of usually sorted at the mine offices and sold the sapphire sold through Thailand, usually represented directly to Thai buyers in the fields. The as originating in Southeast Asia, were actually mined in iron-rich Australian sapphires are predom- Australia. inantly blue (90%),with some yellow, some In spite of the role that Australian sapphire plays in the green, and a very few parti-colored stones. world gem market, surprisingly little has been written The rough stones are commonly heat about this indigenous gem. This article seeks both to de- treated in Thailand to remove the silk. scribe the Australian material and its geologic origins and Whileproduction has been down duringthe to introduce the reader to the techniques used to mine the last two years because of depressed prices combined with higher costs, prospects for material, to heat treat it prior to distribution, and to the future are good.
    [Show full text]
  • Mineralogy of Non-Silicified Fossil Wood
    Article Mineralogy of Non-Silicified Fossil Wood George E. Mustoe Geology Department, Western Washington University, Bellingham, WA 98225, USA; [email protected]; Tel: +1-360-650-3582 Received: 21 December 2017; Accepted: 27 February 2018; Published: 3 March 2018 Abstract: The best-known and most-studied petrified wood specimens are those that are mineralized with polymorphs of silica: opal-A, opal-C, chalcedony, and quartz. Less familiar are fossil woods preserved with non-silica minerals. This report reviews discoveries of woods mineralized with calcium carbonate, calcium phosphate, various iron and copper minerals, manganese oxide, fluorite, barite, natrolite, and smectite clay. Regardless of composition, the processes of mineralization involve the same factors: availability of dissolved elements, pH, Eh, and burial temperature. Permeability of the wood and anatomical features also plays important roles in determining mineralization. When precipitation occurs in several episodes, fossil wood may have complex mineralogy. Keywords: fossil wood; mineralogy; paleobotany; permineralization 1. Introduction Non-silica minerals that cause wood petrifaction include calcite, apatite, iron pyrites, siderite, hematite, manganese oxide, various copper minerals, fluorite, barite, natrolite, and the chromium- rich smectite clay mineral, volkonskoite. This report provides a broad overview of woods fossilized with these minerals, describing specimens from world-wide locations comprising a diverse variety of mineral assemblages. Data from previously-undescribed fossil woods are also presented. The result is a paper that has a somewhat unconventional format, being a combination of literature review and original research. In an attempt for clarity, the information is organized based on mineral composition, rather than in the format of a hypothesis-driven research report.
    [Show full text]
  • The Occurrence of Zeunerite at Brooks Mountain Seward Peninsula Alaska
    GEOLOGICAL SURVEY CIRCULAR 214 THE OCCURRENCE OF ZEUNERITE AT BROOKS MOUNTAIN SEWARD PENINSULA ALASKA By WalterS. West and Max G. White UNITED STATES DEPARTMENT OFT Oscar L. Chapman, Secret GEOLOGICAL SURV W. E. Wrathe;r, Direct r THE OCCURRENCE OF ZEUNERITE ~ BROOKS MOUNTAIN SEWARD PENINSULA, SKA By Walter S. West and Max G. This report concerns work done o behalf of the U. S. Atomic Ener CoDllllis$ion and is .published with the permission of the Commission. Washington, D. C.,l952 Free on application to the Geological Survey, Washington 25, D. C. THE OCCURRENCE OF ZEUNERITE AT BROOKS MOUNTAIN SEWARD PENINSULA, ALASKA CONTENTS Page Page Abstract.................................... 1 Mineral Deposits and Introduction .. ; . 1 radioactivity studies.. 3 Geology . 2 E'oggy Day prospect. 3 Description of rock types . 2 Tourmaline No. 2 claim. 6 Slate . 2 Minor occurrences Limestone . 2 of zeunerite. 6 Granite . 2 Radioactivity of the granite. 7 Dikes............................. 3 Conclusions. 7 Structure . .. 3 Recommendation for Hydrothermal alteration of sedimen- prospecting. 7 tary rocks and granite ............ , . 3 R.eferences cited . • . 7 ILLUSTRATIONS Page Plate 1. Geologic map of the Brooks Mountain area, Teller quadrangle, Seward Peninsula, Alaska .. .. .. • . • . • Inside back cover Figure 1. Index map of the Seward Peninsula, Alaska, showing the location of the Brooks Mountain area . • . • . 2 TABLE Pa"ge Table 1. Analyses of selected samples from the Brooks Mountain area, Seward Peninsula. • . 4 ABSTRACT mineral zone may occur below the zone of oxidation at the Foggy Day prospect. Zeunerite occurs near the surface of a granite stock on the southwest flank of Brooks Mountain, INTRODUCTION Alaska. The largest deposit is at the Foggy Day prospect.
    [Show full text]
  • Rock and Mineral Identification for Engineers
    Rock and Mineral Identification for Engineers November 1991 r~ u.s. Department of Transportation Federal Highway Administration acid bottle 8 granite ~~_k_nife _) v / muscovite 8 magnify~in_g . lens~ 0 09<2) Some common rocks, minerals, and identification aids (see text). Rock And Mineral Identification for Engineers TABLE OF CONTENTS Introduction ................................................................................ 1 Minerals ...................................................................................... 2 Rocks ........................................................................................... 6 Mineral Identification Procedure ............................................ 8 Rock Identification Procedure ............................................... 22 Engineering Properties of Rock Types ................................. 42 Summary ................................................................................... 49 Appendix: References ............................................................. 50 FIGURES 1. Moh's Hardness Scale ......................................................... 10 2. The Mineral Chert ............................................................... 16 3. The Mineral Quartz ............................................................. 16 4. The Mineral Plagioclase ...................................................... 17 5. The Minerals Orthoclase ..................................................... 17 6. The Mineral Hornblende ...................................................
    [Show full text]
  • Handout (Everyday Objects: Stove)
    Everyday Minerals Grade 4 - Understanding Earth and Space Systems Rocks and Minerals Handout (Everyday Objects: Stove) From the list below, fill in the blank spots with the correct mineral used to make the different parts of a bicycle. 1 Sciencenorth.ca/teachers Science North is an agency of the Government of Ontario and a registered charity #10796 2979 RR0001. List of minerals: Gallium Pentlandite Pentlandite Cinnabar Germanium Chromite Quartz/silica Hematite Hematite Hematite Galena Common uses for these minerals: Cinnabar is an ore of mercury and is used in thermometers. ​ Gallium is a soft, silvery metal used mainly in electronic circuits, semiconductors and light-emitting diodes (LEDs). It is also useful in ​ high-temperature thermometers, barometers, pharmaceuticals and nuclear medicine tests. Germanium's largest use is in the semiconductor industry. When doped with small amounts of arsenic, gallium, indium, antimony or ​ phosphorus, germanium is used to make transistors for use in electronic devices. Germanium is also used to create alloys and as a phosphor in fluorescent lamps. Hematite is the most important ore of iron. It is used in steel components and in many products such as building materials, cars and mostly ​ anything containing metal. Pentlandite is an ore of nickel. It’s most common use is in the production of stainless steel, like in sinks and cutlery, but is also an ​ important alloy to make other metals stronger or more heat resistant.. Chromite is used on handles, buttons and other chrome plated components. ​ Galena, also called lead glance, is the ore of lead. It is used in weights for lifting and diving, in solder for electronic components, in ​ components used to store energy, and most importantly in car batteries.
    [Show full text]
  • Sulfur-Poor Intense Acid Hydrothermal Alteration: a Distinctive Hydrothermal Environment ⇑ Douglas C
    Ore Geology Reviews 88 (2017) 174–187 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeo Sulfur-poor intense acid hydrothermal alteration: A distinctive hydrothermal environment ⇑ Douglas C. Kreiner , Mark D. Barton Department of Geosciences and Lowell Institute for Mineral Resources, University of Arizona, Tucson, AZ 85721, United States article info abstract Article history: A fundamentally distinct, sulfide-poor variant of intense acid (advanced argillic) alteration occurs at the Received 8 June 2016 highest structural levels in iron oxide-rich hydrothermal systems. Understanding the mineralogy, and Received in revised form 16 February 2017 geochemical conditions of formation in these sulfide-poor mineral assemblages have both genetic and Accepted 20 April 2017 environmental implications. New field observations and compilation of global occurrences of low- Available online 23 April 2017 sulfur advanced argillic alteration demonstrates that in common with the sulfide-rich variants of advanced argillic alteration, sulfide-poor examples exhibit nearly complete removal of alkalis, leaving Keywords: a residuum of aluminum-silicate + quartz. In contrast, the sulfur-poor variants lack the abundant pyri- Iron-oxide copper gold te ± other sulfides, hypogene alunite, Al-leached rocks (residual ‘‘vuggy” quartz) as well as the Au-Cu- IOCG Advanced argillic Ag ± As-rich mineralization of some sulfur-rich occurrences. Associated mineralization is dominated by Low-sulfur advanced argillic magnetite and/or hematite with accessory elements such as Cu, Au, REE, and P. These observations pre- sented here indicate there must be distinct geologic processes that result in the formation of low-sulfur advanced argillic styles of alteration. Hydrolysis of magmatic SO2 to sulfuric acid is the most commonly recognized mechanism for generat- ing hypogene advanced argillic alteration, but is not requisite for its formation.
    [Show full text]
  • Spectroscopic Analysis of Microdiamonds in Ophiolitic Chromitite and Peridotite
    THEMED ISSUE: Ophiolites, Diamonds, and UHP Minerals: New Discoveries and Concepts on Upper Mantle Petrogenesis Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite Kyaw Soe Moe1, Jing-Sui Yang2, Paul Johnson1, Xiangzhen Xu2, and Wuyi Wang1 1GEMOLOGICAL INSTITUTE OF AMERICA, 50 W 47TH STREET, NEW YORK, NEW YORK 10036, USA 2STATE KEY LABORATORY OF CONTINENTAL TECTONICS AND DYNAMICS, CENTER FOR ADVANCED RESEARCH ON MANTLE (CARMA), CHINESE ACADEMY OF GEOLOGICAL SCIENCES, 26 BAIWANZHUANG ROAD, BEIJING, 100037, CHINA ABSTRACT Microdiamonds ~200 µm in size, occurring in ophiolitic chromitites and peridotites, have been reported in recent years. Owing to their unusual geological formation, there are several debates about their origin. We studied 30 microdiamonds from 3 sources: (1) chromitite ore in Luobusa, Tibet; (2) peridotite in Luobusa, Tibet; and (3) chromitite ore in Ray-Iz, polar Ural Mountains, Russia. They are translucent, yellow to greenish-yellow diamonds with a cubo-octahedral polycrystalline or single crystal with partial cubo-octahedral form. Infrared (IR) spectra 0 revealed that these diamonds are type Ib (i.e., diamonds containing neutrally charged single substitutional nitrogen atoms, Ns, known as the C center) with unknown broad bands observed in the one-phonon region. They contain fluid inclusions, such as water, carbonates, silicates, hydrocarbons, and solid CO2. We also identified additional microinclusions, such as chromite, magnetite, feldspar (albite), moissanite, hema- tite, and magnesiochromite, using a Raman microscope. Photoluminescence (PL) spectra measured at liquid nitrogen temperature suggest that these diamonds contain nitrogen-vacancy, nickel, and H2 center defects. We compare them with high-pressure–high-temperature (HPHT) synthetic industrial diamond grits.
    [Show full text]