The Ufm1 System Is Upregulated by ER Stress During Osteogenic Differentiation

Total Page:16

File Type:pdf, Size:1020Kb

The Ufm1 System Is Upregulated by ER Stress During Osteogenic Differentiation bioRxiv preprint doi: https://doi.org/10.1101/720490; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Ufm1 system is upregulated by ER stress during osteogenic differentiation Michal Dudek1* and Gillian A. Wallis1 1 Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK * Corresponding author: Dr Michal Dudek e-mail: [email protected] Abstract Objective: Mutations in the catalytic site of the ubiquitin-fold modifier 1(UFM1)-specific peptidase 2 (UFSP2) gene have been identified to cause autosomal dominant Beukes hip dysplasia in a large multigenerational family and a novel form of autosomal dominant spondyloepimetaphyseal dysplasia in a second family. We investigated the expression of the UFSP2/UFM1 system during mouse joint development the connection to ER stress induced during osteogenic differentiation. Methods: The pattern of expression of Ufsp2 was determined by radioactive RNA in situ hybridisation on mouse tissue sections. qPCR was used to monitor expression during in vitro osteogenic differentiation and chemically induced ER stress. Affinity purification and mass spectrometry was used for isolation and identification of Ufm1 conjugation targets. Luciferase reporter assay was used to investigate the activity of Ufm1 system genes’ promoters. Results: We found that Ufsp2 was predominantly expressed in the bone and secondary ossification centres of 10-day old mice. The Ufm1 system was upregulated during in vitro osteogenic differentiation and in response to chemically induced ER stress. We identified unfolded protein response elements in the upstream sequences of Uba5, Ufl1, Ufm1and Lzap. We identified putative Ufm1 conjugation targets where conjugation was increased in response to ER stress. Conclusion: Higher expression of Ufsp2 in bone and secondary ossification centres as well as upregulation of components of the Ufm1system in response to ER stress suggests that the molecular pathway between the UFSP2 mutations and form of skeletal dysplasia may relate to abnormal ER stress responses during osteoblast differentiation. Keywords: Ufm1, Ufsp2, ER Stress, Osteoarthritis, enzyme cascade the major components of which are: i) the E1- 1. Introduction activating enzyme, Uba5 (ubiquitin like modifier activating enzyme 5); ii) the E2 enzyme, Ufc1 (UFM1 conjugating We have previously identified a unique mutation in the Ufm1- enzyme 1), responsible for conjugation of Ufm1 to target specific peptidase 2 gene, UFSP2, that results in loss of proteins; iii) Ufl1, a Ufm1 E3 ligase, and iv) Ufsp1 and Ufsp2 UFSP2 catalytic activity (in vitro) of in a large (the UFM1 specific peptidases 1 and 2) [3]. Additionally, multigeneration family with Beukes Hip Dysplasia (BHD) [1]. Lzap (Cdk5rap3) is a substrate adaptor for Ufl1 and Ddrgk1 is BHD is an autosomal dominant disorder characterised by one of few known Ufm1 conjugation targets. Loss-of-function bilateral dysmorphism that is limited to the proximal femur mutation in DDRGK1gene was found to cause Shohat-type and delayed ossification of the secondary centre, which results SEMD, a condition characterised by disproportionate short in severe progressive degenerative osteoarthropathy from stature, lordosis, genu varum, and joint hypermobility. childhood. A second novel mutation in the UFSP2 gene, also Radiographically, patients with SEMD have delayed predicted to cause loss of UFSP2 catalytic activity [2] has been epiphyseal ossification, platyspondyly with central notches in identified in affected members of a family with a novel form the vertebral end plates, radiolucency of the femoral of autosomal dominant spondyloepimetaphyseal dysplasia metaphyses, and relative fibular overgrowth. Genetic deletion (SEMD) involving the epiphyses predominantly of the hips, of DDRGK1in zebrafish and in mice led to disruption of but also of knees, ankles, wrists and hands, with variable cartilage formation by decreasing Sox9 protein level [4]. degrees of metaphysis and spine involvement and characterised by short stature, joint pain and genu varum. Components of the Ufm1 system localise to the ER, and functional studies point to specialised roles for ufmylation in UFSP2 is a component of the Ufm1 (ubiquitin-fold modifier regulating ER-related stress [3]. The ER is a major site of 1) system, which like the ubiquitin system, comprises a multi- protein quality control, housing the synthesis machinery for 1 bioRxiv preprint doi: https://doi.org/10.1101/720490; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. proteins destined to be secreted or membrane-trafficked of buffer per slide) and heated to 95°C. The hybridisation mix within the cell, as well as chaperones to assist protein folding. was then applied on the slides and the slides were covered with Chondrocytes and osteoblasts actively secrete the proteins that glass cover slips. The slides were then placed in hybrydisation form the vast extracellular matrix of cartilage and bone. Forms chamber containing 50% formamide and incubated overnight of skeletal dysplasia caused by mutations in matrix genes have at 55°C. On the next day cover slips were removed and slides been identified where ER stress is a common feature of their were incubated in following wash solutions and buffers: Wash molecular pathology [5, 6]. solution twice at 55°C for 20 min and once at 65°C for 20 minutes; RNase buffer twice at 37°C for 15 minutes; RNase A In this study, following identifying that Ufsp2 is expressed by at 37°C for 30 minutes; RNase buffer at 37°C for 15 minutes; osteoblasts during mouse joint development, we investigated Wash solution twice at 65°C for 20 min; SSC/DTT buffer at whether the Ufm1 system is differentially regulated during 5°C for 20 min and then 5 minutes at room temperature; osteogenic differentiation and in response to ER stress. ammonium acetate / ethanol for 2 minutes at room temperature. The slides were then dehydrated through the 2. Methods graded ethanol series, air dried and exposed to 2.1 Radioactive in situ hybridisation autoradiography film overnight to confirm the hybridisation worked before covering the slides with photoreactive Probe synthesis: DNA template for the synthesis of RNA emulsion. probe was prepared by linearisation of plasmids containing probe sequence with a restriction enzyme cutting at the 5’ end of RNA polymerase transcription site generating antisense Developing: After confirming the hybridisation with RNA product. The template DNA was then separated on autoradiography film the slides were covered with K5 nuclear agarose gel and extracted using QIAquick Gel Extraction Kit. emulsion (Ilford, UK) prepared as 50:50 solution with 2% The radio-labelled probe was synthesised replacing UTP with glycerol, dried and stored in dark for 2 weeks before 35 S UTP using Riboprobe® System (Promega) for 40 min at developing. The slides were developed in D19 developer 37°C. After this time 1μl of RNA polymerase was added and (Kodak) and fixed using Unifix (Kodak). After developing the reaction was incubated at 37°C for an additional 1 hour. slides were H&E stained using Thermo Shandon Linistain Following transcription the DNA template was digested with GLX stainer. DNase at 37°C for 10 minutes. The RNA probe was then precipitated. The pellet was washed with 50 μl of 10 mM DTT 2.2 Protein extraction diluted in 100% EtOH. After drying the RNA pellet was resuspended in 50 μl of 50 mM DTT diluted in DEPC H2O. Cartilage tissues were pulverized using a liquid-nitrogen- cooled tissue grinder and proteins extracted as previously Preparation of tissue sections: Mouse tissues were fixed described [5]. Briefly, cartilage samples were reconstituted in overnight in 4% PFA in PBS, processed in Shandon Citadel 100 μL of 100 mM Tris acetate buffer pH 8.0 containing 10 2000 tissue processor and paraffin embedded. Tissues from mM EDTA and protease/phosphatase inhibitors and mice older than newborn were decalcified for three days in deglycosylated by treatment with 0.1 units of chondroitinase decalcification solution (20% EDTA, 4% PFA in PBS pH 7.4) ABC for 6 h at 37 °C. Proteins were sequentially extracted in at 4°C before embedding. Slides were prepared by sectioning a chaotropic buffer containing guanidine hydrochloride (4M paraffin blocks on Microm HM 355S microtome with feed set GuHCl, 65 mM DTT, 10 mM EDTA in 50 mM sodium to 5 and drying them overnight in 50°C. The sections were acetate, pH 5.8). Protein samples were precipitated with nine then de-waxed in xylene and rehydrated by passing through a volumes of ethanol, washed once in 70% ethanol, then graded ethanol series. The slides were incubated in 2% HCl resuspended in 120 μL of solubilisation buffer (7 M urea, 2 M for 20 minutes, washed in 2x SSC and incubated in proteinase thiourea, and 30 mM Tris, pH 8.0) and the volume was K buffer for 10 minutes at 37°C. The proteinase was then adjusted to achieve a concentration of ∼1 mg/mL, as estimated inactivated by dipping the slides in 2mg/ml glycine for 2 using the EZQ protein quantitation protocol (Thermo Fisher). minutes at room temperature. Slides were washed twice in Samples were then stored at −80 °C until required. Protein PBS, incubated for 20 minutes in 4% PFA-PBS and washed in samples were analysed by SDS-PAGE and detected by silver PBS again. The slides were then incubated in triethanolamine staining as previously described. (triethanolamine 4.65 ml, 875 μl acetic anhydride and 345ml H2O) for 10 minutes at room temperature and washed in PBS 2.3 Osteogenic differentiation followed by wash in H2O and dehydrating through the graded Subconfluent 2T3 cells were trypsinized and plated on ethanol series.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Uncovering Ubiquitin and Ubiquitin-Like Signaling Networks Alfred C
    REVIEW pubs.acs.org/CR Uncovering Ubiquitin and Ubiquitin-like Signaling Networks Alfred C. O. Vertegaal* Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands CONTENTS 8. Crosstalk between Post-Translational Modifications 7934 1. Introduction 7923 8.1. Crosstalk between Phosphorylation and 1.1. Ubiquitin and Ubiquitin-like Proteins 7924 Ubiquitylation 7934 1.2. Quantitative Proteomics 7924 8.2. Phosphorylation-Dependent SUMOylation 7935 8.3. Competition between Different Lysine 1.3. Setting the Scenery: Mass Spectrometry Modifications 7935 Based Investigation of Phosphorylation 8.4. Crosstalk between SUMOylation and the and Acetylation 7925 UbiquitinÀProteasome System 7935 2. Ubiquitin and Ubiquitin-like Protein Purification 9. Conclusions and Future Perspectives 7935 Approaches 7925 Author Information 7935 2.1. Epitope-Tagged Ubiquitin and Ubiquitin-like Biography 7935 Proteins 7925 Acknowledgment 7936 2.2. Traps Based on Ubiquitin- and Ubiquitin-like References 7936 Binding Domains 7926 2.3. Antibody-Based Purification of Ubiquitin and Ubiquitin-like Proteins 7926 1. INTRODUCTION 2.4. Challenges and Pitfalls 7926 Proteomes are significantly more complex than genomes 2.5. Summary 7926 and transcriptomes due to protein processing and extensive 3. Ubiquitin Proteomics 7927 post-translational modification (PTM) of proteins. Hundreds ff fi 3.1. Proteomic Studies Employing Tagged of di erent modi cations exist. Release 66 of the RESID database1 (http://www.ebi.ac.uk/RESID/) contains 559 dif- Ubiquitin 7927 ferent modifications, including small chemical modifications 3.2. Ubiquitin Binding Domains 7927 such as phosphorylation, acetylation, and methylation and mod- 3.3. Anti-Ubiquitin Antibodies 7927 ification by small proteins, including ubiquitin and ubiquitin- 3.4.
    [Show full text]
  • CDK5RAP3, a Novel Nucleoplasmic Shuttle, Deeply Regulates HSF1-Mediated Heat Stress Response and Protects Mammary Epithelial Cells from Heat Injury
    International Journal of Molecular Sciences Article CDK5RAP3, a Novel Nucleoplasmic Shuttle, Deeply Regulates HSF1-Mediated Heat Stress Response and Protects Mammary Epithelial Cells from Heat Injury 1, 1, 2, 1 3 1, Yangyang Shen y , Yan Zou y , Jun Li y, Fanghui Chen , Honglin Li and Yafei Cai * 1 College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (Y.S.); [email protected] (Y.Z.); [email protected] (F.C.) 2 College of Life Sciences, Anhui Normal University, Wuhu 241000, China; [email protected] 3 Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-131-5156-8780 These authors contributed equally to this work. y Received: 12 October 2020; Accepted: 7 November 2020; Published: 9 November 2020 Abstract: CDK5RAP3 was regarded as the most significant regulator of cellular responses against heat stress, which is associated with dysfunctions of the immune system and animal susceptibility to disease. Despite this, little known about how CDK5RAP3 regulates heat stress response. In this study, CDK5RAP3 conditional Knockout (CKO) mice, CDK5RAP3-/- mouse embryo fibroblasts (MEFs) and bovine mammary epithelial cells (BMECs) were used as an in vitro and in vivo model, respectively to reveal the role of CDK5RAP3 in regulating the heat stress response. The deletion of CDK5RAP3 unexpectedly caused animal lethality after 1.5-h heat stimulations. Furthermore, BMECs were re-cultured for eight hours after heat stress and was found that the expression of CDK5RAP3 and HSPs showed a similar fluctuating pattern of increase (0–2, 4–6 h) and decrease (2–4, 6–8 h).
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Ufmylation Inhibits the Proinflammatory Capacity of Interferon-Γ–Activated Macrophages
    UFMylation inhibits the proinflammatory capacity of interferon-γ–activated macrophages Dale R. Balcea,1,2, Ya-Ting Wanga,b, Michael R. McAllasterb,1, Bria F. Dunlapa, Anthony Orvedahlc, Barry L. Hykes Jra, Lindsay Droita, Scott A. Handleya, Craig B. Wilend,e, John G. Doenchf, Robert C. Orchardg, Christina L. Stallingsb, and Herbert W. Virgina,1,2 aDepartment of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cDepartment of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; dDepartment of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510; eDepartment of Immunobiology, Yale School of Medicine, New Haven, CT 06510; fBroad Institute of MIT and Harvard, Cambridge, MA 02142; and gDepartment of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Contributed by Herbert W. Virgin, November 19, 2020 (sent for review June 15, 2020; reviewed by Masaaki Komatsu and Hong Zhang) Macrophages activated with interferon-γ (IFN-γ) in combination in regulating this aspect of cellular immunity. Thus, understanding with other proinflammatory stimuli, such as lipopolysaccharide pathways that positively and negatively regulate IFN-γ–dependent or tumor necrosis factor-α (TNF-α), respond with transcriptional macrophage activation is an important priority. and cellular changes that enhance clearance of intracellular path- Here we performed a genome-wide CRISPR screen to identify ogens at the risk of damaging tissues. IFN-γ effects must therefore proteins that negatively regulate IFN-γ responses in macrophages.
    [Show full text]
  • The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
    Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h.
    [Show full text]
  • RAB-GAP Immunity Signaling by the Tbc1d23 Spatiotemporal Inhibition
    Downloaded from http://www.jimmunol.org/ by guest on September 27, 2021 is online at: average * The Journal of Immunology , 17 of which you can access for free at: 2012; 188:2905-2913; Prepublished online 6 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1102595 http://www.jimmunol.org/content/188/6/2905 Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras, Ivana V. Yang, Brad Lackford, David W. H. Riches, Rytis Prekeris, Jonathan H. Freedman, David A. Schwartz and Scott Alper J Immunol cites 58 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/06/jimmunol.110259 5.DC1 This article http://www.jimmunol.org/content/188/6/2905.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 27, 2021. The Journal of Immunology Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras,*,† Ivana V. Yang,†,‡ Brad Lackford,x David W.
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Full-Text.Pdf
    Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility This information is current as Ramesh Ram, Munish Mehta, Quang T. Nguyen, Irma of September 23, 2021. Larma, Bernhard O. Boehm, Flemming Pociot, Patrick Concannon and Grant Morahan J Immunol 2016; 196:3043-3053; Prepublished online 24 February 2016; doi: 10.4049/jimmunol.1502056 Downloaded from http://www.jimmunol.org/content/196/7/3043 Supplementary http://www.jimmunol.org/content/suppl/2016/02/19/jimmunol.150205 Material 6.DCSupplemental http://www.jimmunol.org/ References This article cites 44 articles, 5 of which you can access for free at: http://www.jimmunol.org/content/196/7/3043.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility Ramesh Ram,*,† Munish Mehta,*,† Quang T.
    [Show full text]
  • Meta-Qtls, Ortho-Metaqtls and Candidate Genes for Grain Yield and Associated Traits in Wheat (Triticum Aestivum L.)
    Meta-QTLs, Ortho-MetaQTLs and Candidate Genes for Grain yield and Associated Traits in Wheat (Triticum aestivum L.) Dinesh Kumar Saini Punjab Agricultural University Puja Srivastava ( [email protected] ) Punjab Agricultural University https://orcid.org/0000-0002-9260-8931 Neeraj Pal GBPant University of Agriculture &amp; Technology: Govind Ballabh Pant University of Agriculture &amp; Technology P. K. Gupta Meerut University: Chaudhary Charan Singh University Research Article Keywords: wheat, grain yield, meta-QTLs, ortho-MQTLs, candidate genes, marker-assisted breeding Posted Date: April 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-430452/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract The present study involved meta-QTL analysis based on 8,998 QTLs, including 2,852 major QTLs for grain yield (GY) and its following ten component/related traits: (i) grain weight (GWei), (ii) grain morphology related traits (GMRTs), (iii) grain number (GN), (iv) spikes related traits (SRTs), (v) plant height (PH), (vi) tiller number (TN), (vii) harvest index (HI), (viii) biomass yield (BY), (ix) days to heading/owering and maturity (DTH/F/M) and (x) grain lling duration (GFD). The QTLs used for this study were retrieved from 230 reports involving 190 mapping populations (1999–2020), which also included 19 studies involving durum wheat. As many as 141 meta-QTLs were obtained with an average condence interval of 1.37 cM (reduced 8.87 fold), the average interval in the original QTL being > 12.15 cM. As many as 63 MQTLs, each based on at least 10 original QTLs were considered to be the most stable and robust with thirteen identied as breeder’s meta-QTL.
    [Show full text]
  • The Ufm1 Cascade
    Cells 2014, 3, 627-638; doi:10.3390/cells3020627 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review The Ufm1 Cascade Jens Daniel and Eva Liebau * Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Schlossplatz 8, D-48143 Münster, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-251-832-1710; Fax: +49-251-832-1766. Received: 14 March 2014; in revised form: 26 May 2014 / Accepted: 28 May 2014 / Published: 11 June 2014 Abstract: The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. Keywords: Ufm1; UBL; ER stress; unfolded protein response 1. Introduction Posttranslational modifications are cellular mechanisms that enable a rapid response to internal and external changes. Beside small molecule modifications, like acetylation, methylation or phosphorylation, a large family of small proteins (e.g., ubiquitin and ubiquitin-like proteins) has evolved that is covalently attached to and detached from other proteins, thereby modifying their function [1]. In this review, we will focus on Ufm1 (ubiquitin-fold modifier 1), an ubiquitin-like protein (UBL) that was discovered 12 years ago [2,3], and summarize the current state of knowledge.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]