Skomer Marine Nature Reserve

Total Page:16

File Type:pdf, Size:1020Kb

Skomer Marine Nature Reserve skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 1 Skomer Marine Nature Reserve Stars, squirts and slugs... marine life in an underwater refuge skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 2 The Countryside Council for Wales is the statutory adviser to government on sustaining natural beauty, wildlife and the opportunity for outdoor enjoyment throughout Wales and its inshore waters. With English Nature and Scottish Natural Heritage, CCW delivers its statutory responsibilities for Great Britain as a whole, and internationally, through the Joint Nature Conservation Committee. ISBN: 18-6169-113-0 CCC : 208 Cover illustration: Seaslug Coryphella browni Inseide cover: Spiny starfish Marthasterias glacialis All the images and information in the booklet are the products of the work CCW staff carry out in looking after the MNR. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 3 Stars, squirts and slugs Wildlife of the Skomer Marine Nature Reserve Imagine a world where stars, squirts and slugs all exist side by side. Such a world exists in the Skomer Marine Nature Reserve (MNR), although here the stars, squirts and slugs are forms of life and perhaps not familiar to many. The stars are the many relatives of the common starfish: sunstars, bloodstars, brittlestars, spinystars, cushionstars and featherstars. The squirts cannot be compared to anything on land - most look more like miniature hand-painted jellies and flower heads than animals. And the slugs are tiny, voracious predators which are infinitely more colourful and attractive than any garden slug. But there is much more to the Reserve. The wonderfully scenic coast and seabed provide an abundance of different habitats - places for animals and plants to live - and they are teeming with all kinds of life, not just the familiar seals, fishes, crabs and lobsters. The Reserve is home to more than a third of all British algae (seaweed) species, over 75 different sponges and 40 species of anemone and soft coral. It is the great variety and abundance of animals and plants which makes this area special. Each fits into a complicated web of marine life influenced by an enormously wide range of living conditions. Evolution’s answers to the problems of living in such a demanding environment have provided us with a multitude of wonderful organisms of many colours, shapes and sizes. These unfamiliar life-forms are hidden just out of sight beneath the waves. The following pages bring just a few to the surface. The purpose of the Marine Nature Reserve is to conserve this wealth of wildlife. By promoting careful and responsible use of the Reserve, habitats and wildlife are protected from damage and disturbance. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 4 Habitats and water movement The coast is fringed by bays and promontories, cliffs and slopes, isolated rock pinnacles, caves and tunnels. Sea conditions range from tranquil to tempestuous. Huge storm waves pound the south and west coasts.Torrential tidal currents sweep through the Sounds and past headlands and offshore rocks. Sands and muds form the seabed in deep, sheltered water and in bays. Plants and animals live at different depths influenced by the amount of light reaching the seabed. Complicated as it is, this complexity produces diverse habitats and wildlife. If the water could be drained from Jack Sound, this would be the view from high above the sea outside Martin’s Haven. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 5 Wave action Strong currents Sheltered bay skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 6 Rocky shores The Reserve has 27 kilometres of coast. More than 95 percent is rocky shore. The shape of the shore and the animals and plants living there, vary according to the strength of the wind, waves, tides and currents they are exposed to. Steep, extremely exposed cliff are dominated by small, tough animals - few seaweed can survive. Wave-swept rock slopes provide a habitat for short, specialised forms of seaweed which hang on tightly to the rock surface. Partially sheltered rock platforms have rich communities with rockpools; seaweeds dominate the lower shore. Boulders on sheltered shores contain lush seaweed communities and provide shelter for many animals. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:38 Page 7 Splash zone lichens extend over sixty metres up cliffs. Shells protect these animals from drying out and being eaten. Limpets and winkles affect the appearance of shores by grazing on young seaweed. Shore-dwelling seaweed are specialists at conserving water during low tide. Vulnerable fish and soft- bodied animals survive on shores by living in rock pools and sheltering under boulders. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 8 Dense "forests" of large brown kelp plants are found only in the shallowest eight metres in the Reserve. The need for light restricts seaweeds to shallow water. Water clarity affects how much light is available. Kelps can extend down to 30 metres in very clear water, but only to about one metre in the more turbid water of nearby Milford Haven. Kelps are the largest marine seaweed. Their structure is simple. Their fronds form a forest "canopy", often encrusted by seafirs and seamats. Kelp stipes, the "tree trunks", are sometimes colonised by sponges and sea squirts. The holdfast anchors the plants to rock. Its root-like structure is an animal refuge. Over 250 species have been recorded living in kelp holdfasts. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 9 Many red seaweeds need less light than kelp. They thrive in the shade of the kelp canopy and form dense "meadows" down rock slopes below the edge of the forest. Blue-rayed limpets are tiny, but voracious and eat large holes in kelp stipes. Sea urchins are the "rabbits" of the marine world. They are the most important grazer of subtidal rock surfaces and are vital to maintenance of biodiversity. Flower-like anemones are actually predators equipped with stinging tentacles ready to capture food. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 10 The animal zone Light-dependant algae cannot survive in water much deeper than fifteen metres in the Reserve. Rocky surfaces deeper than this are smothered by characteristic "turfs" of animals fixed to the seabed . Tidal currents bring plentiful food, in the form of plankton and tiny organic fragments. These minute particles are filtered from the water by specialised seafirs, seasquirts, sponges and bryozoans, and trapped by the stinging tentacles of anemones and corals. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 11 Ross corals are not corals at all, but are colonies of countless individuals living in microscopic chalky building blocks. These fragile structures grow to over a metre across. Jewel anemones of many colour varieties form sheets of thousands of individuals. They reproduce by cloning, with parent anemones splitting into two. Delicate sponges, susceptible to damage, thrive in gentle water movement. In strong currents animals need to be firmly attached so as not to be swept away. In Jack Sound currents can reach over 10 miles per hour - about eight times faster than the average person can swim. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 12 Seabed sediments Sand, gravel and mud habitats often appear tranquil. They provide few places for animals to hide or find shelter and many which live there use camouflage or armour to survive on the sediment surface, or burrow beneath it. The anglerfish hiding in this picture has perfected the art of camouflage. It eats a wide variety of prey which it lures into a suitable position above its cavernous mouth by twitching a lure on the end of its dorsal fin. Scallops hide themselves under a thin layer of sediment and are protected by their thick shells from all but the most determined predators. Camouflage is achieved by body shape, colour and pattern. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 13 Eelgrass is the only subtidal British marine flowering plant, and is very rare in Wales. The plants form very productive beds which stabilise mobile sediment and provide shelter for fish. Burrowing animals get the best of two worlds. Their tentacles capture food from the water passing by, whilst their bodies remain safely protected. When danger threatens they completely retract into the sediment. skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 14 Predators and grazers hunt and forage These colourful fish live in and defend territories. Cuckoo wrasse are protogynous hermaphrodites. This scientific description simply means that they are all born females, but can become males when a dominant male disappears. This striking blue-marked one is male. Free floating plankton are paralysed by the stinging tentacles of jellyfish, passed to the mouth, then digested in the central stomach. Cuckoo wrasse - Labrus mixtus Tompot blennies live in cracks and crevices in rock. They have large, fringed tentacles, one above each eye. Tompot blenny - Parablennius gattorugine Starfish meander across the seabed using hundreds of tube feet with sucker-like ends, each species seeking out its own favourite prey. This seven-armed starfish eats Spiny starfish and common sea urchin brittlestars. Seven-armed starfish - Luidia ciliaris Marthasterias glacialis & Echinus esculentus skomer BOOKLET 1a:skomer BOOKLET 1a 30/9/08 23:39 Page 15 Grey seals are Britains largest predator. They roam widely hunting fish and shellfish. Each autumn they return to the same beaches and caves to have their pups and mate.
Recommended publications
  • Marine Aquaculture Site – Grey Horse Channel Outer Video Survey June 2018
    Marine Aquaculture Site – Grey Horse Channel Outer Video Survey June 2018 MARINE HARVEST ( SCOTLAND) LIMITED SEPTEMBER 2018 Registered in Scotland No. 138843 Stob Ban House 01397 715084 - Registered Office, Glen Nevis Business Park 1st Floor, Admiralty Park Fort William, PH33 6RX Kate. Stronach@marineharvest. com Admiralty Road, Rosyth, Fife Stob Ban House KY11 2YW Glen Nevis Business Park http:// marineharvest. com Fort William, PH33 6RX Grey Horse Channel Outer 2018 Baseline Video Survey Report 2 | 14 Video Survey Assessment for: Marine Harvest ( Scotland) Ltd. proposed Grey Horse Channel Outer Farm Requirement for survey: Baseline Date of survey: 26/06/2018 Surveyed by: Marine Harvest (Scotland) Ltd. Equipment used: Towed Sledge with HD camera A video survey was undertaken at Grey Horse Channel Outer to examine the epifauna on the seabed and the baseline assessment will be submitted as part of applications for licences at the proposed site. Marine Harvest (Scotland) Ltd. propose to install a new site north west of Greineam Island which will operate to a biomass of 2500t. The site will consist of 14 circular pens each 120m in circumferen ce and held in 75m matrix squares in a 2 x 7 grid. Modelling has been completed using AutoDEPOMOD and a predicted deposition footprint generated. The Grey Horse Channel Outer video survey provides seabed footage on transects through the area of seabed within the predicted footprint. Grey Horse Channel Outer Biotope Assessment The footage for the transects has been viewed to identify occurring species, habitat types and zonation using the Marine Habitat Classification Hierarchy and SACFOR abundance scale from the JNCC website ( 2017).
    [Show full text]
  • Nephrops Survey Phase II: the Processes That Underlie Quality Loss in the Whole Animal Compared to the Tailed Product
    Neil, D.M., Coombs, G.M., Birkbeck, T.H., Atkinson, R.J.A., Crozier, A., Albalat, A., Gornik, S., Smith, I.P., Beevers, N.D., Milligan, R.J., and Theethakaew, C. (2008) The Scottish Nephrops Survey Phase II: The Processes that Underlie Quality Loss in the Whole Animal Compared to the Tailed Product. Project Report. University of Glasgow, Glasgow, UK. Copyright © 2008 University of Glasgow A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/81234/ Deposited on: 20 June 2013 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk The Scottish Nephrops Survey A joint venture to generate high quality Nephrops products from a sustainable fishery Delivered through A research partnership between Young’s Seafood Ltd., the University of Glasgow and UMBS Millport Scientific Report on Phase II Professor D.M. Neil, Professor G.H. Coombs, Professor T.H. Birkbeck, Professor R.J.A. Atkinson*, Professor A. Crozier, Dr A. Albalat, Dr S. Gornik, Dr P. Smith*, Mr. N. Beevers, Ms R.J. Milligan and Ms C. Theethakaew December 2008 Scientific Report The Scottish Nephrops Survey Phase II EXECUTIVE SUMMARY ..................................................................................................... 3 INTRODUCTION ................................................................................................................... 7 Modified atmosphere packing (MAP) of whole N. norvegicus .......................... 10 MAP in fish and shellfish ...................................................................................... 14 Melanosis and Anti-melanotic treatments ........................................................... 18 Quality Index Method (QIM) ..............................................................................
    [Show full text]
  • Cephalopod Id Guide for the North Sea
    CEPHALOPOD ID GUIDE FOR THE NORTH SEA Christian Drerup – University of Algarve, Portugal Dr Gavan Cooke – Anglia Ruskin University, UK PREFACE The intention of this guide is to help identifying cephalopod species in the North Sea which you may find while SCUBA diving, snorkelling, a boat trip or even while walking along a rocky shore. It focuses on shallow water and subsurface-inhabiting species or those which at least partially spent their life in depths less than 50 meters. As you may encounter these animals in the wild most likely just for a short glance, we kept the description of each cephalopod rather simple and based on easy-to-spot external features. This guide was made within the scope of the project “Cephalopod Citizen Science”. This project tries to gather scientific information about the “daily life” of cephalopods by analysing pictures of those animals which were posted in several, project-related facebook groups. For further information about this project, please follow the link below: https://www.researchgate.net/project/Cephalopod-Citizen-Science We hope this guide will provide useful information and help you to identify those cephalopods you may encounter soon. Christian Drerup – University of Algarve, Portugal Dr. Gavan Cooke – Anglia-Ruskin-University, UK Common octopus (Octopus vulgaris). © dkfindout.com 2 CONTENTS HOW SHOULD WE INTERACT WITH CEPHALOPODS WHEN DIVING WITH THEM? ............... 4 SIGNS THAT A CEPHALOPOD IS UNHAPPY WITH YOUR PRESENCE ...................................... 5 OCTOPUSES (OCTOPODA) ................................................................................................
    [Show full text]
  • Fish and Shellfish Ecology Volume I
    Morlais Project Environmental Statement Chapter 10: Fish and Shellfish Ecology Volume I Applicant: Menter Môn Morlais Limited Document Reference: PB5034-ES-010 Chapter 10: Fish and Shellfish Ecology Author: Marine Space Morlais Document No.: Status: Version No: Date: MOR/RHDHV/DOC/0015 Final F3.0 July 2019 © 2019 Menter Môn This document is issued and controlled by: Morlais, Menter Mon. Registered Address: Llangefni Town Hall, Anglesey, Wales, LL77 7LR, UK Unauthorised copies of this document are NOT to be made Company registration No: 03160233 Requests for additional copies shall be made to Morlais Project Document Title: Morlais ES Chapter 10: Fish and Shellfish Ecology Document Reference: PB5034-ES-010 Version Number: F3.0 TABLE OF CONTENTS TABLE OF TABLES ................................................................................................................. II TABLE OF FIGURES (VOLUME II) .......................................................................................... II GLOSSARY OF ABBREVIATIONS .........................................................................................IV GLOSSARY OF TERMINOLOGY ...........................................................................................IV 10. FISH AND SHELLFISH ECOLOGY ............................................................................... 6 10.1. INTRODUCTION ............................................................................................................ 6 10.2. POLICY, LEGISLATION AND GUIDANCE ...................................................................
    [Show full text]
  • Wgceph Report 2018
    ICES WGCEPH REPORT 2018 ECOSYSTEM PROCESSES AND DYNAMICS STEERING GROUP ICES CM 2018/EPDSG:12 REF. SCICOM Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH) 5-8 June 2018 Pasaia, San Sebastian, Spain International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2019. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 5–8 June 2018, Pasaia, San Sebastian, Spain. ICES CM 2018/EPDSG:12. 194 pp. https://doi.org/10.17895/ices.pub.8103 The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, imag- es, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other re- production requests, please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2019 International Council for the Exploration of the Sea ICES WGCEPH REPORT 2018 | i Contents Executive summary ...............................................................................................................
    [Show full text]
  • (Tursiops Truncatus) and Harbour Porpoises (Phocoena Phocoena) Are Two of the Most Commonly Recorded Cetaceans in UK Waters
    Fatal Interactions between Bottlenose Dolphins (Tursiops truncatus) and Harbour Porpoises (Phocoena phocoena) in Welsh Waters Dissertation submitted in partial fulfilment of the requirements for BSc in Applied Marine Biology. By Rebecca Boys 500241603 Bangor University, Wales In association with: Sea Watch Foundation and CSIP 500241603 Rebecca Boys osue0d Acknowledgements My primary thanks go to Peter Evans, founder of the Sea Watch Foundation, for all his encouragement and criticism as well as for directing me towards useful papers. I am truly grateful for all the feedback and for his generosity of time and knowledge. Secondly, to Dr Line Cordes at Bangor University, for all her help with R, and for her kindness and time when I was feeling frustrated with statistics. I would also like to thank CSIP, and in particular Rob Deaville, for answering my numerous questions and for all his encouragement and advice on strandings. Additional thanks go to my supervisor at Bangor University, Dr John Turner, for his advice and encouragement. Thanks also go to Charlie Lindenbaum, NRW, for his initial support and advice for MapInfo and to Dr Tom Stringell, NRW, for his constructive criticism and encouragement along the way. Finally, I would like to thank my dad, for helping me with proof reading and for the many phone calls of advice as well for his encouragement throughout my entire degree. 500241603 Rebecca Boys osue0d Abstract Competition between sympatric species is a well-known phenomenon throughout the animal kingdom (Ross and Wilson, 1996; Baird et al., 1998) and can be direct or indirect. Competition over a shared resource often leads to aggressive interactions, which can be fatal to the inferior species (Polis et al., 1989).
    [Show full text]
  • CEPHALOPODS A3a.3.1 Introduction
    Offshore Energy SEA A3a.3 CEPHALOPODS A3a.3.1 Introduction This section describes the biology and ecology of the main cephalopod species found within UK waters. Cephalopods are short-lived, carnivorous invertebrates with rapid growth rates that play an important role in marine food webs. Two superorders of the class Cephalopoda are found within the area: the Decapodiformes (squid and cuttlefish) and the Octopodiformes (octopuses). Most cephalopods lack an external shell and are highly mobile predators. They possess complex eyes, similar to those of vertebrates and are often regarded as the most intelligent of invertebrates. The importance of cephalopod stocks to commercial fisheries is increasing, as fish stocks dwindle and become subject to tighter management (Boyle & Pierce 1994). Much of the work carried out on cephalopod distributions and abundances in UK waters is based on landings data and routine research vessel surveys co- ordinated by ICES. Information on the life history, distribution and abundance of these species has been taken from a review of UK cephalopods produced by Hastie et al. (2008), unless otherwise cited. An overview of important cephalopod species in UK waters is provided, followed by a brief description of features specific to each Regional Sea. A3a.3.2 UK context A number of species occur in UK waters, with varying degrees of frequency. Most cephalopods will be in one of five groups: the long-finned squids (Lolignids), the short-finned squids (Ommastrephids), bobtails (Sepiolids), cuttlefish and octopuses. Among the most frequently recorded species are: the long-finned squids, Alloteuthis subulata and Loligo forbesii; the short finned squid, Todarodes sagittatus; other squids, Gonatus fabricii and Onychoteuthis banksii; the bobtail squids, Rossia macrosoma, Sepiola atlantica and Sepietta oweniana; the octopus, Eledone cirrhosa.
    [Show full text]
  • Moray Coast, North Aberdeenshire 2003-2007
    Lumpsucker Portsoy Marion Perutz Seasearchers Lilias Parks Dahlia anemone Brown shrimp George Brown MORAY FIRTH COAST George Brown ABERDEENSHIRE Seaslug Flabellina gracilis Coral worm Bernard Picton Gawaine Appleby Yarrell’s blenny George Brown Cuckoo wrasse George Brown The North Aberdeenshire coastline Seven-armed starfish Alan Bellerby The dramatic yet under-explored Moray Firth coastline of north Aberdeenshire displays a wide variety of habitats, from steep cliffs, arches and islands at Trouphead to sheltered bays at Millshore and wide expanses of beach at Macduff. On a coast where no underwater recorders existed, Seasearch divers have helped fill in some of the blanks. Redhythe Point (surveyed Feb 2006) Beneath the cliffs at Redhythe Point, on a peninsular to the west of Portsoy, the rock face progresses into a vertical wall to 10 metres. The seabed then flattens out to very large, scoured boulders interspersed with cobbles and pebbles. Kelp park covered the tops of the boulders and sparse animal turf (echinoderms, bryozoans and dead men’s fingers Alcyonium digitatum) on the sides. The latter were home to the scale worm Harmothoe propinqua, small shrimp and an abundance of nudibranchs including Tritonia plebii. A two-spotted cling fish Diplecogaster bimaculatus was camouflaged against the pink encrusting algae on the wall. Portsoy harbour (Sep 2003, Feb 2006, Apr 2006) On the outer edge of the new harbour at Portsoy is a shallow wall (4 m bcd) leading around to some bedrock gullies. At the entrance to the harbour is flat sand. Progressing around to the seaward side is stony reef (small and medium sized boulders interspersed with cobbles and pebbles) covered in kelp forest and red algae.
    [Show full text]
  • Identifying Species and Ecosystem Sensitivities Final Report
    Identifying species and ecosystem sensitivities Final Report Appendix 18(A). Key Information reviews completed. Priority 1 species. Berne NI Act CITES UK BAP Hab. Dir. Common Name Scientific name Priority W&C Act Nat. status Red list (IUCN) Completion Tentacled lagoon worm Alkmaria romijni 1,4 * Scarce None Refereed Sea fan anemone Amphianthus dohrnii 1,6 * Rare None Complete Lagoon sandworm Armandia cirrhosa 1,4 * * Rare None Refereed Knotted wrack Ascophyllum nodosum (*) 1,2 * * Widespread None Refereed Fan Mussel Atrina fragilis 1,6 * * * Scarce None Refereed DeFolin's lagoon snail Caecum armoricum 1,4 * * Rare Insufficiently known Refereed A hydroid Clavopsella navis 1,4 * * Rare None Refereed Edible sea urchin Echinus esculentus 1,2 * Widespread Lower Risk (LR/nt) Refereed Ivell's sea anemone Edwardsia ivelli 1,4 * * Rare Data deficient Complete Pink sea fan Eunicella verrucosa 1,6 * * Scarce Vulnerable (VU A1d). Complete The tall sea pen Funiculina quadrangularis 1 * Not available None Complete Lagoon sand shrimp Gammarus insensibilis 1,4 * * Scarce None Refereed Giant goby Gobius cobitis 1,4 * Rare None Complete Couch's goby Gobius couchi 1,4 * Rare None Complete Sunset cup coral Leptopsammia pruvoti 1,4,6 * Rare None Complete Maerl Lithothamnion corallioides 1,2 * * Not available None Refereed Maerl Lithothamnion glaciale 1,2 * Not available None Complete Starlet sea anemone Nematostella vectensis 1,4 * * Scarce Vulnerable (VU A1ce) Complete Legend: UK BAP = UK Biodiversity Action Plan; W&C Act = Wildlife & Conservation Act (1981); Hab. Dir. = EC Habitat Directive; NI Act = Wildlife (NI) Order 1985; CITES = CITES Convention; Berne = Berne Convention; Nat. Status = National Status.
    [Show full text]
  • Dear Authors. Please See Below for Specific Edits Allowed on This Document (So That We Can Keep Track of Changes / Updates): 1
    _______________________________________________________ Dear authors. Please see below for specific edits allowed on this document (so that we can keep track of changes / updates): 1. Affiliations (Suggesting mode) 2. Comments only on sections 1-6, 8-14 (unless it is your groups’ section, in which case edits using Suggesting mode allowed) 3. Edits and contributions can be made by anyone, using Suggesting mode, to sections 7, 15-18. NB! Suggesting mode- see fig below: pencil icon at top right of toolbar must be selected as Suggesting (not Editing). ___________________________________________________________ WORLD OCTOPUS FISHERIES Warwick H. Sauer[1], Zöe Doubleday[2], Nicola Downey-Breedt[3], Graham Gillespie[4], Ian G. Comentario [1]: Note: Authors Gleadall[5], Manuel Haimovici[6], Christian M. Ibáñez[7], Stephen Leporati[8], Marek Lipinski[9], Unai currently set up as: W. Sauer Markaida[10], Jorge E. Ramos[11], Rui Rosa[12], Roger Villanueva[13], Juan Arguelles[14], Felipe A. (major lead), followed by section leads in alphabetical order, Briceño[15], Sergio A. Carrasco[16], Leo J. Che[17], Chih-Shin Chen[18], Rosario Cisneros[19], Elizabeth followed by section contributors in Conners[20], Augusto C. Crespi-Abril[21], Evgenyi N. Drobyazin[22], Timothy Emery[23], Fernando A. alphabetical order. Fernández-Álvarez[24], Hidetaka Furuya[25], Leo W. González[26], Charlie Gough[27], Oleg N. Katugin[28], P. Krishnan[29], Vladimir V. Kulik[30], Biju Kumar[31], Chung-Cheng Lu[32], Kolliyil S. Mohamed[33], Jaruwat Nabhitabhata[34], Kyosei Noro[35], Jinda Petchkamnerd[36], Delta Putra[37], Steve Rocliffe[38], K.K. Sajikumar[39], Geetha Hideo Sakaguchi[40], Deepak Samuel[41], Geetha Sasikumar[42], Toshifumi Wada[43], Zheng Xiaodong[44], Anyanee Yamrungrueng[45].
    [Show full text]
  • Commercial Octopus Species from Different Geographical Origins
    Commercial octopus species from different geographical origins: Levels of polycyclic aromatic hydrocarbons and potential health risks for consumers Marta Oliveiraa, Filipa Gomesa, Álvaro Torrinhab, Maria João Ramalhosaa, ∗ Cristina Delerue-Matosa, Simone Moraisa, a REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal b REQUIMTE-LAQV, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal Keywords: Polycyclic aromatic hydrocarbons Octopus Biometric characterization Inter- and intra-species comparison Daily intake Risks ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants that have been raising global concern due to their carcinogenic and mutagenic properties. A total of 18 PAHs (16 USEPA priority compounds, benzo(j) fluoranthene and dibenzo(a,l)pyrene) were assessed in the edible tissues of raw octopus (Octopus vulgaris, Octopus maya, and Eledone cirrhosa) from six geographical origins available to Portuguese consumers. Inter- and intra-species comparison was statistically performed. The concentrations of total PAHs (∑PAHs) ranged between 8.59 and 12.8μg/kg w.w. Octopus vulgaris caught in northwest Atlantic Ocean presentedΣPAHs significantly higher than those captured in Pacific Ocean and Mediterranean Sea, as well as than the other characterized species from western central and northeast Atlantic Ocean. PAHs with 2–3 rings were the predominant com- pounds (86–92% of∑PAHs) but diagnostic ratios indicated the existence of pyrogenic sources in addition to petrogenic sources. Known and possible/probable carcinogenic compounds represented 11–21% ofΣPAHs. World and Portuguese per capita ingestion of∑PAHs due to cephalopods consumption varied between 1.62- − − 2.55 × 10 4 and 7.09-11.2 × 10 4 μg/kg body weight per day, respectively.
    [Show full text]
  • Trawling and Creeling for Nephrops. Impacts on Biodiversity and Population Structure
    UNIVERSIDADE DO ALGARVE TRAWLING AND CREELING FOR NEPHROPS. IMPACTS ON BIODIVERSITY AND POPULATION STRUCTURE. LINO ALEXANDRE ANTÓNIO MARQUES THESIS Master degree in Aquaculture and Fisheries (Specialization in Fisheries) Scientific advisers: Margarida Castro (CCMAR, UALG) Aida Campos (IPMA, CCMAR) 2014/2015 Declaração de autoria do Trabalho Declaração de autoria do Trabalho Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. __________________________ Copyright A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. 2 Acknowledgments Acknowledgments I dedicate this thesis to everyone that has always been there, my parents, to my brother, to all my years of work and study, to my dearest friends and to the randomness of life that brought me to where I stand today. This thesis would not be possible without some key characters on my life, to my parents for all the work, support and belief they had on me along all the years, to my coordinator, Doctor Margarida Castro and Doctor Aida Campos, for providing me with the means to
    [Show full text]