Mobile Technology-Based Services for Global Health and Wellness: Opportunities and Challenges”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blue Button Initiative Offers a Glimpse Into the Future of Sharing Health Data
Blue Button Initiative Offers a Glimpse into the Future of Sharing Health Data The most exciting thing for me about being in healthcare today is the contrast between steep challenges the industry faces on so many fronts – and the vast potential offered by biological and information technology. We do have some dragons to slay, but we also have amazing tools: genetic research, stem cell therapies and nanotechnology, alongside the potential for insight gleaned from mountains of big data. It’s an exciting time, to be certain, and with so much change happening on so many fronts our work is in the spotlight more than it has been in a long time. We don’t have to wait for exotic technologies or highly educated software to make a positive difference in patient care and outcomes. Often the most empowering tools for the patient are the simplest to use. If engagement is the holy grail of patient-centered care, then it has to be our goal to make that engagement simple and effective. In the United States especially, with an aging demographic and a generation behind it accustomed to slick consumer-driven technology, it is not enough for new treatments to be powerful – they also have to be approachable. One of the most interesting ways this is being done right now is at the Department of Veterans Affairs (or the VA) with the “Blue Button Initiative“. The project has given veterans the ability to click a “blue button” and download their own health and military service records into a simple text file or pdf. -
Blue Button Health Data at Your Fingertips MAY 2013
FACT SHEET Blue Button Health Data at Your Fingertips MAY 2013 Blue Button is an easy, secure way to download your health data. Already, several federal agencies and many private organizations are using it. For consumers, gaining access to the health information necessary for our health and health care, and the tools to make that information useful, are key benefits of health information technology (health IT). Blue Button is a monumental advancement in getting consumers the access they need and deserve. How does it work, and what more needs to be done to enhance consumer access and use of health information? Potential Game Changer for Consumers A Simple Concept with Transformational Potential The idea behind Blue Button is simple: a patient is provided with a highly visible button to download his or her medical records in digital form from a secure website offered by doctors, insurers, pharmacies or other health-related service.1 Right now, all Medicare beneficiaries, service members, and Veterans can go online and download their health data with the click of a Blue Button. When Stage 2 of the Electronic Health Record (EHR) “Meaningful Use” Incentive Program goes live in 2013-2014, even more patients and families will have the opportunity to view, download, or transmit (V/D/T) their health data as they see fit.2 Electronic access anytime, anywhere to health information, such as diagnoses, medication lists, lab test results, and immunization records, promotes use of health IT in ways that really matter to consumers, patients, and families. Blue Button facilitates: Meaningful Partnerships: Consumers can be true partners in health and health care only if they have access to comprehensive and accurate information they need to be engaged in their care. -
Wi-Fi® Smart Device Enablement Kit User Guide
ATWINC15x0 Smart Device Kit Wi-Fi® Smart Device Enablement Kit User Guide Introduction The Wi-Fi Smart Device Enablement Kit is a small and easy demonstration and development platform for Internet of Things (IoT) solutions. It is designed to demonstrate the design of typical IoT applications. The kit is controlled by a SAML21G18B host MCU. It is equipped with an ATWINC15x0 IEEE® 802.11 b/g/n network controller, an ATECC608A CryptoAuthentication™ device, an MCP73833 Li-Ion/Li-Po charge management controller, a MIC5317 High PSRR LDO, BME280 environment sensor and VEML6030 light sensor. It can be programmed and debugged with an Atmel-ICE programmer through SWD interface or programmed with an SAM-BA® in-system programmer through USB interface. The Wi-Fi Smart Device Enablement Kit is pre-programmed and configured for demonstrating connectivity to the AWS® IoT cloud, working with Amazon Alexa®. The user can speak to an Alexa- enabled device (for example, Echo Dot®) to get the sensor data and control LED of the kit. A mobile application is provided for board registration and network configuration. It can be used to monitor and control the kit. As an IoT edge, this firmware provides the control, monitoring, Wi-Fi connectivity and security functions in a typical IoT scenario. This board is used for evaluation/demonstration purposes only. © 2019 Microchip Technology Inc. User Guide DS50002880A-page 1 ATWINC15x0 Smart Device Kit Table of Contents Introduction .....................................................................................................................1 -
Download This PDF File
Paper—Defining Stable Touch Area based on a Large-Screen Smart Device in 3D-Touch Interface Defining Stable Touch Area based on a Large-Screen Smart Device in 3D-Touch Interface https://doi.org/10.3991/ijim.v13i02.10153 YounghoonSeo, Dongryeol Shin, Choonsung Nam * Sungkyunkwan University, Suwon, Republic of Korea( ) [email protected] Abstract—Touch interface technologies for mobile devices are essentially in use. The purpose of such touch interfaces is to run an application by touching a screen with a user’s finger or to implement various functions on the device. When the user has an attempt to use the touch interface, users tend to grab the mobile device with one hand. Because of the existence of untouchable areas to which the user cannot reach with the user’s fingers, it is possible to occur for a case where the user is not able to touch a specific area on the screen accurately. This results in some issues that the mobile device does not carry out the user’s desired function and the execution time is delayed due to the wrong implemen- tation. Therefore, there is a need to distinguish the area where the user can sta- bly input the touch interface from the area where the users cannot and to over- come the problems of the unstable touch area. Furthermore, when the size of the screen increases, these issues will become more serious because of an increase in the unstable touch areas. Especially, an interface that receives position and force data like 3D-touch requires the stable area setting different from the con- ventional 2D-touch. -
Develop Mobile Applications with Oracle Adf Mobile
ORACLE DATA SHEET Disclaimer: The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decision. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle. DEVELOP MOBILE APPLI CATIONS WITH ORACLE ADF MOBILE KEY FEATURES AND BENEFITS Oracle JDeveloper 11g R2 enables developers to rapidly develop EXTEND YOUR APPLICATION REACH TO MOBILE DEVICES applications that run on multiple mobile devices. With the powerful THE FUSION WAY. Oracle Application Development Framework (Oracle ADF) Mobile, developers can quickly develop applications for multiple mobile FEATURES • Visual and declarative platforms such as iOS. This simplifies the path forward as mobile development platforms evolve and delivers compelling mobile applications for • Mobile applications for rich, on-device clients for multiple users. mobile platforms such as iOS • Extends the power of Fusion Mobile Enterprise Challenges Middleware to mobile applications Mobile access to enterprise applications is fast becoming a standard part of corporate life. Such applications increase organizational efficiency because mobile BENEFITS devices are more readily at hand than their desktop counterparts. • Develop once, and deploy to many devices and channels However, the speed with which mobile platforms are evolving creates challenges as • Single IDE for mobile and enterprises define their mobile strategies. Smart phones such as iPhone are powerful non-mobile development platforms, but different mobile platforms offers different tools and languages for • Single framework for mobile and desktop enterprise developers. -
Arxiv:1809.10387V1 [Cs.CR] 27 Sep 2018 IEEE TRANSACTIONS on SUSTAINABLE COMPUTING, VOL
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO. X, MONTH YEAR 0 This work has been accepted in IEEE Transactions on Sustainable Computing. DOI: 10.1109/TSUSC.2018.2808455 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8299447&isnumber=7742329 IEEE Copyright Notice: c 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv:1809.10387v1 [cs.CR] 27 Sep 2018 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO. X, MONTH YEAR 1 Identification of Wearable Devices with Bluetooth Hidayet Aksu, A. Selcuk Uluagac, Senior Member, IEEE, and Elizabeth S. Bentley Abstract With wearable devices such as smartwatches on the rise in the consumer electronics market, securing these wearables is vital. However, the current security mechanisms only focus on validating the user not the device itself. Indeed, wearables can be (1) unauthorized wearable devices with correct credentials accessing valuable systems and networks, (2) passive insiders or outsider wearable devices, or (3) information-leaking wearables devices. Fingerprinting via machine learning can provide necessary cyber threat intelligence to address all these cyber attacks. In this work, we introduce a wearable fingerprinting technique focusing on Bluetooth classic protocol, which is a common protocol used by the wearables and other IoT devices. Specifically, we propose a non-intrusive wearable device identification framework which utilizes 20 different Machine Learning (ML) algorithms in the training phase of the classification process and selects the best performing algorithm for the testing phase. -
Twistin: Tangible Authentication of Smart Devices Via Motion Co-Analysis with a Smartwatch
TwistIn: Tangible Authentication of Smart Devices via Motion Co-analysis with a Smartwatch Ho Man Colman Leung, Chi Wing Fu, Pheng Ann Heng The Chinese University of Hong Kong, Hong Kong Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, SIAT, CAS, China Motivation Method Observation: There will be more connected devices in the future with smaller size and limited interface, IoT Units Installed Base by Category 25.00 20.00 15.00 10.00 Business: Vertical-Specific 5.00 Business: Cross-Industry Billions of Units Billions 0.00 Consumer 2016 2017 2018 2020 Source: Gartner (January 2017) 1. The user is wearing an already-authenticated smartwatch 2. A smart device is picked up by the user 3. The user performs the TwistIn gesture simultaneously on both devices 4. The motions of the devices are co-analyzed 5. The smart device is authenticated Bluetooth Tracker, Smart Glasses, Bluetooth Toy, Speaker, 360 Camera but existing methods are ineffective. Challenges People hold the devices differently and each device has its own reference frame. → Optimize a transformation matrix to align two devices’ motion data The data is noisy due to motion of the wrist joint → Filter out the unwanted motion by extracting the forearm rotation using rotation decomposition Android Swipe Pattern, Apple’s TouchID, Amazon Alexa, BB-8 Toy, Apple Watch Unlocking This motivates us to propose a simple gesture that takes a smartwatch as an authentication token for fast access and control of other smart devices. Devices that are stationary or not twisted at the same time should not be co-analyzed Potential Applications → A fast algorithm to prune away candidates having the gestures performed at different times. -
ZOLEO Global Satellite Communicator User Manual
ZOLEO Global Satellite Communicator User Manual Legal Notices, Intellectual Property, Trade Secret, Proprietary or Copyrighted Information Please review legal notices on our website at https://www.zoleo.com/en/legal-notice. Privacy Learn more about our privacy policy and GDPR compliance at https://www.zoleo.com/en/security-and-privacy-policy. Export Compliance Information This product is controlled by the export laws and regulations of the United States of America. The U.S. Government may restrict the export or re-export of this product to certain individuals and/or destinations. For further information, contact the U.S. Department of Commerce, Bureau of Industry and Security or visit https://www.bis.doc.gov/. 2 ZOLEO Global Satellite Communicator User Manual Table of Contents 1. Introduction ................................................................................................................................ 5 1.1 Glossary ............................................................................................................................................. 5 2. Items Supplied ........................................................................................................................... 7 3. Features of the ZOLEO Communicator ................................................................................... 7 4. Account Owners and Users ....................................................................................................... 8 5. Getting Started ......................................................................................................................... -
The Mobile Operating Systems Analysis 2012- 2017: Who Wins: Android Vs
The Mobile Operating Systems Analysis 2012- 2017: Who wins: Android vs. iOS vs. Windows? 4.4.5 Middle East and Africa Mobile OS Sales Forecast 2012-2017 Dominated by the Symbian platform in 2012, visiongain believes that Android will pick up where the incumbent leaves off. Smart device sales in the MEA region will inevitably be driven by low- cost Android handsets from OEMs such as Huawei, ZTE, HTC, and Motorola. Windows and iOS will have a more pronounced impact on the Middle Eastern market than the African one, with higher sales volumes in countries such as Israel, the UAE, Bahrain, and Saudi Arabia. Visiongain forecasts this region to have relatively low smart device penetration in 2017, reaching sales of just over 107 million units that year. See Figure 4.31 and Table 4.25. Figure 4.31 Middle East & Africa Mobile OS Sales Forecast 2012-2017 (million units) 60 50 40 30 Millions 20 10 0 2012 2013 2014 2015 2016 2017 Android iOS Windows BlackBerry Symbian Others Source: Visiongain 2012 www.visiongain.com PagePage 8484 The Mobile Operating Systems Analysis 2012- 2017: Who wins: Android vs. iOS vs. Windows? Figure 4.32 Middle East & Africa Mobile OS Sales Forecast Market Share 2012 (% Share) 2.5% 27.2% 49.6% 10.5% 7.0% 3.1% Android iOS Windows BlackBerry Symbian Others Source: Visiongain 2012 Figure 4.33 Middle East & Africa Mobile OS Sales Forecast Market Share 2014 (% Share) 2.4% 14.3% 1.2% 47.4% 16.4% 18.3% Android iOS Windows BlackBerry Symbian Others Source: Visiongain 2012 www.visiongain.com PagePage 8686 The Mobile Operating Systems Analysis 2012- 2017: Who wins: Android vs. -
Introduction to Ehealth and Informatics
Using Technology to Teach about Technology: Educational Offerings in mHealth and eHealth @ JHU Betty Jordan, DNSc, RNC Director, Baccalaureate Program Assistant Professor, Johns Hopkins University School of Nursing Edward Bunker, MPH, MS Associate (Instructor), JHU BSPH, Department of International Health Associate Director, Public Health Informatics Certificate Program Health Informatics Advisor, Jhpiego – an affiliate of Johns Hopkins Topics to Cover Brief Overview of the Global mHealth Initiative (GmI) Current course offerings in eHealth and mHealth Course offerings under discussion Experiences with Voice Thread Student service learning and mHealth student internships 2 Why mHealth? At the end of 2011, there were 6 billion mobile subscriptions Int. Telecom Union 2011 That’s almost 86% of the world’ s population 4.5 billion subscriptions are indeveloping the world alone mobiThinking 2012 in addition There are 4.2 billion texters worldwide That’s 5 times the (number of Facebook ) members 6.1 trillion texts sent worldwide each year Source: Tippett.org Mission: To improve global health by developing and advancing appropriate and effective uses of mobile information and communication technologies through innovative mHealth applications, evidence-based research, program evaluation, and advocacy. Vision: • Capitalize on engineering, IT and population-based research strengths • Develop and test novel solutions • Integrate active research into teaching and learning opportunities for students • Facilitate and expand collaborative networks across the Johns Hopkins University 5 6 Simple, Tangible Goals Drive innovation by fostering practical problem-solving − Interdisciplinary collaborations − “Grounded” in field reality − “Systems” construction − Strong emphasis on evaluation research Educate – understand the technology, the evidence, and the broader human systems Build capacity and global partnerships to test and scale mobile ICT where appropriate. -
HCI and Mhealth Wearable Tech: a Multidisciplinary Research Challenge
CHI 2020 Case Study CHI 2020, April 25–30, 2020, Honolulu, HI, USA HCI and mHealth Wearable Tech: A Multidisciplinary Research Challenge Abstract Lucretia Williams Amir Rahmani This paper explores the challenges of HCI work within University of California, Irvine University of California, Irvine multidisciplinary research projects across health Department of informatics School of Nursing sciences, social sciences, and engineering, through Irvine, CA, USA Irvine, CA, USA discussion of a specific case study research project [email protected] [email protected] focused on supporting under-resourced pregnant women. Capturing the perspectives of community- Gillian R. Hayes Nikil Dutt based health care workers (N=14) using wearable University of California, Irvine University of California, Irvine technology for servicing pregnant women provided Department of Informatics Department of Computer insight into considerations for technology for this Irvine, CA, USA Science specific population. Methods of inquiry included design [email protected] Irvine, CA, USA and development of a prototype wearable and mobile [email protected] system as well as self-report via a survey detailing their Yuqing Guo experience with the system and how it can possibly University of California, Irvine benefit their duties of monitoring their pregnant School of Nursing patients. The process outcomes of this work, however, Irvine, CA, USA provide broader insight into the challenges of [email protected] conducting this kind of interdisciplinary work that remain despite decades of effort and financial investment to support interdisciplinary research, particularly in health informatics and interactive Permission to make digital or hard copies of part or all of this work for technologies for health. -
Medication Management Technologies for Long-Term and Post-Acute Care
Medication Management Technologies for Long-Term and Post-Acute Care: A PRIMER AND PROVIDER SELECTION GUIDE WHITE PAPER MEDICATION MANAGEMENT TECHNOLOGIES FOR LONG-TERM AND POST-ACUTE CARE: A PRIMER AND PROVIDER SELECTION GUIDE 2015 A program of LeadingAge 2519 Connecticut Ave., NW Washington, DC 20008-1520 Phone (202) 508-9438 Fax (202) 783-2255 Web site: LeadingAge.org/CAST © Copyright 2015 LeadingAge LeadingAge Center for Aging Services Technologies: The LeadingAge Center for Aging Services Technologies (CAST) is focused on accelerating the development, evaluation and adoption of emerging technologies that will transform the aging experience. As an international coalition of more than 400 technology companies, aging-services organizations, businesses, research universities and government representatives, CAST works under the auspices of LeadingAge, an association of 6,000 not-for-profit organizations dedicated to expanding the world of possibilities for aging. For more information, please visit LeadingAge.org/CAST Contents 1. Purpose of the Whitepaper, Executive Summary, and Disclaimer .............................................. 1 1.1. Purpose of the Whitepaper.............................................................................................................................1 1.2. Executive Summary ..........................................................................................................................................1 1.3. Disclaimers .........................................................................................................................................................1