Worksheet 6.2 Transformations Using Matrices
Total Page:16
File Type:pdf, Size:1020Kb
Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 1
WorkSHEET 6.2 Transformations using matrices Name: ______
1 Find the image of each of the following points (a) 6 rotated through the angles cos 4 sin 4 R (a) 4 4 sin 4 cos 4 1 1 2 2 (b) 6 1 1 2 2 (i) (1, 3) (ii) (0, –5) Sketch the special triangle to find the (iii) (–3, –1) values of cos etc: 4
(i) 1 1 x 1 2 2 y 1 1 3 2 2 1 3 2 2 1 3 2 2 2 2 2 4 2 2 2
(ii) 1 1 x 0 2 2 y 1 1 5 2 2 5 5 2 2 2 5 5 2 2 2
(iii) x 1 1 3 2 2 y 1 1 1 2 2 3 1 2 2 2 2 3 1 4 2 2 2 2 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 2
(b) cos 6 sin 6 R 6 sin 6 cos 6 3 1 2 2 1 3 2 2 Sketch the special triangle to find the values of cos etc: 6
(i) x 3 1 1 2 2 y 1 3 3 2 2 3 3 2 2 1 3 3 2 2 3 3 2 1 3 3 2
(ii) x 3 1 0 2 2 y 1 3 5 2 2 5 2 5 3 2 (iii) x 3 1 3 2 2 y' 1 3 1 2 2 3 3 1 2 3 3 2
2 Find the equation of the image of line (a) 4 y = 2x – 1 under each of the following cos 2 sin 2 0 1 R rotations: 2 sin 2 cos 2 1 0 x 0 1 x y 1 0 y (a) 2 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 3
Rearrange and multiply by the inverse of the (b) 2 transformation matrix.
1 Sketch the original and image after each x 0 1 x rotation. y 1 0 y 0 1 x 1 0 y x y y x Substitute these values into the original equation. x 2y 1 2y x 1 1 1 y x 2 2 (b) cos 2 sin 2 0 1 R 2 sin 2 cos 2 1 0 x' 0 1 x y' 1 0 y
Rearrange and multiply by the inverse of the transformation matrix.
1 x 0 1 x y 1 0 y 0 1 x 1 0 y x y y x Substitute these values into the original equation. x 2y 1 2y x 1 1 1 y x 2 2 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 4
3 Find the transformation matrix that will result 1 0 (a) M 4 in a reflection through the: y0 0 1 (a) x-axis 1 0 (b) y-axis (b) M x0 0 1 (c) line y = x (d) line y = xtan 0 1 (c) M yx 1 0 cos 2 sin 2 (d) M yx tan sin 2 cos 2
4 (a) 4 (c) (0, 5) in y = x x 1 0 3 3 y 0 1 0 0 (d) (7, –1) in y = 3x
(b) x 1 0 1 1 y 0 1 4 4
(c) x 0 1 0 5 y 1 0 5 0
(d) x cos 2 sin 2 7 3 3 2 2 y sin 3 cos 3 1 Draw a special triangle. Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 5
x 1 3 7 2 2 y 3 1 1 2 2 7 3 2.63 2 7 3 1 6.56 2
5 Find the image of the line y = –x – 3 under x cos 2 sin 2 x 2 reflection in the line y = 2x. y sin 2 cos 2 y Draw a triangle to find .
= tan–12 = –1.107.c
x cos 2.214 sin 2.214x y sin 2.214 cos 2.214 y 0.6 0.8 x 0.8 0.6y Rearrange the equation and multiply by the inverse. x 0.6 0.8 x y 0.8 0.6 y x 0.6x 0.8y y 0.8x 0.6y Substitute into the original equation 0.8x 0.6y 0.6 0.8y 3 1.4y 0.2x 3 1 y x 2.14 7 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 6
6 Find the image of the following curves 4 reflected through the: 1 0 (i) x-axis (a)(i) My = 0 = 0 1 (ii) line y = x 1 x 1 0 x (a) y = x² y 0 1 y (b) x² + (y – 1)² = 4 1 0 x Sketch the original and image curves. 0 1 y x x y y Substitute these values into the original equations y x2 y x2
0 1 (a)(ii) My = x = 1 0 1 x 0 1 x y 1 0 y 0 1 x = 1 0 y x = y y = x Substitute these values into the original equation: x y2 y2 x Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 7
(ii) (b)(i) x x y y Substitute into the original equation: x2 (y 1) 2 4 x2 (y 1)2 4 Vertical shift of –2
(b)(ii) x y y x Substitute into the original equation: (y) 2 (x 1) 2 4 y2 (x 1) 2 4 Horizontal shift of –1 with a vertical shift of –1. Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 8
7 State the transformation matrix that will produce the following dilations: 2 0 (a) 2, parallel to the x-axis (a) D2,x = 0 1 (b) –1, parallel to the y-axis 1 0 1 (b) D = (c) about the origin -1,y 0 1 4 1 0 D 4 (c) 1 0 1 4 4
8 Find the image of the following points (i) 6 under the given dilations. x 1 0 2 2 (a) (a) (2, 2) y 0 4 2 8 (b) (–3, 4) x 1 0 3 3 (c) (0, 6) (b) (d) (1, –3) y 0 4 4 16 x 1 0 0 0 (c) (i) 4, parallel to the y-axis y 0 4 6 24 1 (ii) – , parallel to the x-axis x 1 0 1 1 (d) 2 y 0 4 3 12 (iii) 3, about the origin (ii) 1 x 2 0 2 1 (a) y 0 1 2 2 1 1 x 2 0 3 1 2 (b) y 0 1 4 4 1 x 2 0 0 0 (c) y 0 1 6 6 1 1 x 2 0 1 2 (d) y 0 1 3 3
(iii) x 3 0 2 6 (a) y 0 3 2 6 x 3 0 3 9 (b) y 0 3 4 12 x 3 0 0 0 (c) y 0 3 6 18 x 3 0 1 3 (d) y 0 3 3 9 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 9
9 8 Find the equations of the parabola y = x² under (a) 3 the dilations given in question 7. Sketch the x 2 0 x original and image of each dilation. y 0 1 y Rearrange and multiply by the inverse: x 1 1 0 x y 2 0 2 y
1 x x 2 y y Substitute these into the original equation: 1 y ( x) 2 2 1 x2 4
(b) 1 x 1 0 x y 0 1 y 1 0 x = 0 1 y x x y y Substitute these into the original equation: y x2 y x2 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 10
x 1 1 4 0 x (c) = 1 y 0 4 y 1 0 x = 16 4 1 y 0 4 4 0 x = 0 4 y
x 4x y 4y Substitute these into the original equation: 4y (4x) 2 y 4x2
10 Give the shear transformation matrices that will 2 provide changes with the following: 1 2 (a) S = (a) 2, parallel to the x-axis 2,x 0 1 1 (b) , parallel to the y-axis 1 0 3 1 (b) S , y = 1 3 3 1
11 Find the image positions of the following points (i) 4 under a shear factor of x 1 00 0 (a) (i) 3, parallel to the y-axis y 3 10 0 1 (ii) , parallel to the x-axis x 1 02 2 (b) 4 y 3 10 6 (a) A(0, 0) (b) B(2, 0) x 1 02 2 (c) (c) C (2, 2) y 3 12 8 (d) D(0, 2) x 1 00 0 (d) y 3 12 2
(ii) 1 x 1 4 0 0 (a) y 0 10 0 1 x 1 4 2 2 (b) y 0 10 0 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 11
1 1 x 1 4 2 2 2 (c) y 0 12 2 1 1 x 1 4 0 2 (d) y 0 12 2
12 Find the equation of the parabola y = 2x² under x 1 1 x 3 1 1 a shear factor of , parallel to the x-axis y 0 1 y 3 Rearrange and multiply by the inverse. 1 x 1 3 x y 0 1 y 1 x x y 3 y y Substitute into the original equation: 1 y 2(x y) 2 3 4 2 y 2x2 xy y2 3 9