Worksheet 6.2 Transformations Using Matrices

Worksheet 6.2 Transformations Using Matrices

<p>Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 1</p><p>WorkSHEET 6.2 Transformations using matrices Name: ______</p><p>1 Find the image of each of the following points (a) 6 rotated through the angles   cos 4  sin 4   R    (a) 4     4 sin 4 cos 4  1  1   2 2  (b)    6  1 1   2 2  (i) (1, 3) (ii) (0, –5) Sketch the special triangle to find the  (iii) (–3, –1) values of cos etc: 4</p><p>(i) 1 1 x    1  2 2 y  1 1  3    2 2     1  3   2 2  1  3   2 2   2  2   2   4      2   2 2 </p><p>(ii) 1 1 x    0   2 2 y  1 1  5    2 2    5   5 2   2  2  5   5 2   2   2 </p><p>(iii) x  1  1  3  2 2 y  1 1 1    2 2    3  1 2 2  2    2    3  1    4    2 2  2   2    Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 2</p><p>(b)   cos 6  sin 6  R    6      sin 6 cos 6   3 1  2  2     1 3   2 2  Sketch the special triangle to find the  values of cos etc: 6</p><p>(i) x  3  1  1  2 2 y  1 3  3    2 2     3  3   2 2  1 3 3   2  2   3  3   2 1  3 3   2 </p><p>(ii) x  3  1   0    2 2  y 1 3  5    2 2    5  2    5 3   2  (iii) x  3  1   3  2 2  y'  1 3  1    2 2     3 3  1  2  3  3   2 </p><p>2 Find the equation of the image of line (a) 4 y = 2x – 1 under each of the following   cos 2  sin 2  0 1 R   rotations:       2 sin 2 cos 2  1 0  x 0 1 x   y 1 0  y (a) 2       Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 3</p><p> Rearrange and multiply by the inverse of the (b) 2 transformation matrix.</p><p>1 Sketch the original and image after each x 0 1 x        rotation. y 1 0  y  0 1 x      1 0 y x  y y  x Substitute these values into the original equation. x  2y  1 2y  x  1 1 1 y   x  2 2 (b)   cos 2  sin 2   0 1 R       2       sin 2 cos 2   1 0 x'  0 1 x        y' 1 0 y</p><p>Rearrange and multiply by the inverse of the transformation matrix.</p><p>1 x  0 1 x        y 1 0 y 0 1 x      1 0  y x  y y  x Substitute these values into the original equation. x  2y 1 2y  x 1 1 1 y   x  2 2 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 4</p><p>3 Find the transformation matrix that will result 1 0  (a) M  4 in a reflection through the: y0 0 1 (a) x-axis   1 0 (b) y-axis (b) M  x0  0 1 (c) line y = x   (d) line y = xtan 0 1 (c) M yx    1 0 cos 2  sin 2  (d) M yx tan    sin 2 cos 2 </p><p>4 (a) 4 (c) (0, 5) in y = x x 1 0  3 3           y 0 1 0 0 (d) (7, –1) in y = 3x</p><p>(b) x 1 0 1 1           y  0 1  4  4</p><p>(c) x 0 1 0 5           y 1 0 5 0</p><p>(d) x cos 2  sin 2   7   3 3    2 2    y sin 3 cos 3  1 Draw a special triangle. Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 5</p><p>x  1  3   7    2 2  y 3 1 1    2 2     7  3   2.63 2          7 3  1   6.56   2   </p><p>5 Find the image of the line y = –x – 3 under x cos 2  sin 2  x        2 reflection in the line y = 2x. y sin 2 cos 2  y Draw a triangle to find  .</p><p> = tan–12 = –1.107.c</p><p>x cos 2.214  sin 2.214x       y sin 2.214 cos 2.214 y  0.6 0.8 x      0.8  0.6y Rearrange the equation and multiply by the inverse. x  0.6  0.8 x        y  0.8  0.6 y x  0.6x  0.8y y  0.8x  0.6y Substitute into the original equation 0.8x  0.6y  0.6  0.8y  3 1.4y  0.2x  3 1 y  x  2.14 7 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 6</p><p>6 Find the image of the following curves 4 reflected through the: 1 0  (i) x-axis (a)(i) My = 0 =   0  1 (ii) line y = x   1 x 1 0  x (a) y = x²        y 0 1 y (b) x² + (y – 1)² = 4 1 0  x      Sketch the original and image curves. 0 1 y x  x y  y Substitute these values into the original equations y  x2 y  x2</p><p> 0 1 (a)(ii) My = x =   1 0  1 x  0 1 x        y 1 0  y  0 1 x =     1 0  y x =  y y =  x Substitute these values into the original equation:  x   y2 y2  x Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 7</p><p>(ii) (b)(i) x  x y  y Substitute into the original equation: x2  (y  1) 2  4 x2  (y  1)2  4 Vertical shift of –2</p><p>(b)(ii) x  y y  x Substitute into the original equation: (y) 2  (x 1) 2  4 y2  (x 1) 2  4 Horizontal shift of –1 with a vertical shift of –1. Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 8</p><p>7 State the transformation matrix that will produce the following dilations: 2 0 (a) 2, parallel to the x-axis (a) D2,x =   0 1 (b) –1, parallel to the y-axis 1 0  1 (b) D = (c) about the origin -1,y 0 1 4    1 0 D  4 (c) 1 0 1  4  4 </p><p>8 Find the image of the following points (i) 6 under the given dilations. x 1 0 2 2 (a)           (a) (2, 2) y 0 4 2 8 (b) (–3, 4) x 1 0  3  3 (c) (0, 6)         (b)           (d) (1, –3) y 0 4  4  16  x 1 0 0  0  (c)           (i) 4, parallel to the y-axis y 0 4 6 24 1 (ii) – , parallel to the x-axis x 1 0  1   1  (d)   2 y 0 4  3 12 (iii) 3, about the origin         (ii) 1 x  2 0 2 1 (a)           y  0 1 2  2  1 1 x  2 0  3 1 2  (b)           y  0 1  4   4  1 x  2 0 0 0 (c)           y  0 1 6 6 1 1 x  2 0  1   2  (d)           y  0 1  3  3</p><p>(iii) x 3 0 2 6 (a)           y 0 3 2 6 x 3 0  3  9 (b)           y 0 3  4  12  x 3 0 0  0  (c)           y 0 3 6 18 x 3 0  1   3  (d)           y 0 3  3  9 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 9</p><p>9 8 Find the equations of the parabola y = x² under (a) 3 the dilations given in question 7. Sketch the x 2 0 x        original and image of each dilation. y 0 1 y Rearrange and multiply by the inverse: x 1 1 0 x        y 2 0 2 y</p><p>1 x  x 2 y  y Substitute these into the original equation: 1 y  ( x) 2 2 1  x2 4</p><p>(b) 1 x 1 0  x        y 0 1 y 1 0  x =     0 1 y x  x y  y Substitute these into the original equation:  y  x2 y  x2 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 10</p><p> x 1 1    4 0 x (c)   =  1    y 0 4  y  1 0 x = 16 4  1  y 0 4    4 0 x =     0 4 y</p><p> x  4x y  4y Substitute these into the original equation: 4y  (4x) 2 y  4x2</p><p>10 Give the shear transformation matrices that will 2 provide changes with the following: 1 2 (a) S = (a) 2, parallel to the x-axis 2,x 0 1 1   (b) , parallel to the y-axis 1 0 3 1 (b) S , y =  1  3  3 1</p><p>11 Find the image positions of the following points (i) 4 under a shear factor of x 1 00 0 (a)          (i) 3, parallel to the y-axis y 3 10 0 1 (ii) , parallel to the x-axis x 1 02 2 (b)   4 y 3 10 6 (a) A(0, 0)        (b) B(2, 0) x 1 02 2 (c)          (c) C (2, 2) y 3 12 8 (d) D(0, 2) x 1 00 0 (d)          y 3 12 2</p><p>(ii) 1 x 1 4 0 0 (a)          y 0 10 0 1 x 1 4 2 2 (b)          y 0 10 0 Maths Quest Maths C Year 11 for Queensland Chapter 6 Transformations using matrices WorkSHEET 6.2 11</p><p>1 1 x 1 4 2 2 2  (c)          y 0 12  2  1 1 x 1 4 0  2  (d)          y 0 12 2</p><p>12 Find the equation of the parabola y = 2x² under x 1 1  x  3 1 1       a shear factor of , parallel to the x-axis y  0 1 y 3 Rearrange and multiply by the inverse. 1 x 1 3  x        y 0 1 y 1 x  x  y 3 y  y Substitute into the original equation: 1 y  2(x  y) 2 3 4 2 y  2x2  xy  y2 3 9</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us