Szekeres Washington 0250E 2
DESIGNING STORAGE AND PRIVACY-PRESERVING SYSTEMSFOR LARGE-SCALE CLOUD APPLICATIONS by Adriana SZEKERES A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2020 Reading committe: Henry M. Levy, Co-Chair Arvind Krishnamurthy, Co-Chair Dan R. K. Ports Program Authorized to Offer Degree: Computer Science & Engineering ©Copyright 2020 Adriana SZEKERES University of Washington Abstract Designing Storage and Privacy-Preserving Systems for Large-Scale Cloud Applications Adriana Szekeres Chair of Supervisory Committee: Henry M. Levy, Arvind Krishnamurthy Computer Science & Engineering Today’s mobile devices sense, collect, and store huge amounts of personal information, which users share with family and friends through a wide range of cloud applications. Many of these applications are large-scale – they must support millions of users from all over the world. These applications must manage a massive amount of user-generated content, they must ensure that this content is always available, and they must protect users’ privacy. To deal with the complexity of managing a large amount of data and ensure its availability, large-scale cloud applications rely on transactional, fault-tolerant, distributed storage systems. Latest hardware advancements and new design trends, such as in-memory storage, kernel-bypass message processing, and geo-distribution, have significantly improved the transaction processing times. However, they have also exposed overheads in the protocols used to implement these systems, which hinder their performance; specifically, existing protocols require unnecessary cross-datacenter and cross-processor coordination. This thesis introduces Meerkat, a new replicated storage system that avoids all cross-core and cross-replica coordination for transactions that do not conflict.
[Show full text]