Mechanically Triggered Heterolytic Unzipping of a Low-Ceiling-Temperature Polymer

Total Page:16

File Type:pdf, Size:1020Kb

Mechanically Triggered Heterolytic Unzipping of a Low-Ceiling-Temperature Polymer ARTICLES PUBLISHED ONLINE: 28 APRIL 2014 | DOI: 10.1038/NCHEM.1938 Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer Charles E. Diesendruck1,2,GregoryI.Peterson4, Heather J. Kulik5†,JoshuaA.Kaitz1,BrendanD.Mar5, Preston A. May1,2, Scott R. White2,3,ToddJ.Martı´nez5,6, Andrew J. Boydston4 and Jeffrey S. Moore1,2* Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization–repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended lifetimes. Here, we show that a metastable polymer, end-capped poly(o-phthalaldehyde), undergoes mechanically initiated depolymerization to revert the material to monomers. Trapping experiments and steered molecular dynamics simulations are consistent with a heterolytic scission mechanism. The obtained monomer was repolymerized by a chemical initiator, effectively completing a depolymerization–repolymerization cycle. By emulating remodelling of biomaterials, this model system suggests the possibility of smart materials where aging or mechanical damage triggers depolymerization, and orthogonal conditions regenerate the polymer when and where necessary. aterials systems with reusable building blocks are attractive results demonstrate the essential steps for the realization of for autonomous adaptive structures that have the ability to mechanically induced autonomic remodelling for adaptive and sus- Mremodel themselves in response to environmental con- tainable materials systems. ditions, including damage or degradation. A familiar example of reusable resources found in nature is the recycling of monomeric Results and discussion building blocks for polymers composed of amino acids1,2, carbo- Preparation and testing of polymers. The molecular weight hydrates1,3 and nucleic acids1,4. For synthetic materials, remodelling dependence of the chain scission of polymers in elongational flow has the potential to extend device lifetimes through the removal and fields has been well studied6. For polystyrene subjected to replacement of defective regions or by restructuring parts to meet ultrasonication, the molecular weight threshold for chain scission their changing mechanical environment. One approach to such is typically around 30 kDa (ref. 16). For our initial studies, we adaptive polymeric materials involves mechanically triggered depo- therefore used cationic polymerization to produce cyclic PPA with lymerization followed by mass transfer of the resulting monomer to molecular weights well above the limiting molecular weight its newly needed location and subsequent repolymerization. (Table 1)19. As a reference polymer, we synthesized linear However, mechanochemical bond scission has an inherent limiting poly(methyl acrylate) (PMA) of comparable molecular weight molecular weight, below which mechanochemical energy is not using controlled radical polymerization20. accumulated to a degree sufficient to break a covalent bond5,6.To Sonication was used to study the mechanochemical scission5,6 of overcome this limitation there are two possible solutions: a switch- the polymers described in Table 1. The polymers were dissolved in able monomer–polymer equilibrium (which produces large THF to a concentration where no chain entanglement is expected amounts of oligomers) or metastable polymers in which a mechan- (1 mg ml21), and pulsed ultrasound (0.5 s on, 1.0 s off, ical event activates complete depolymerization7–9. Interestingly, 8.7 W cm22) was applied under argon at 215 8C. Figure 1a–c pre- bone tissue, one of the strongest materials in living organisms, is a sents gel-permeation chromatograms of aliquots removed from the metastable composite under biological conditions10. Both the Suslick cell during the sonication experiment. morphology and properties of bone are dynamic and driven The expected decrease in molecular weight was observed for both C L L by their mechanical environment, as a consequence of PPA90 and PMA103. In great contrast to PMA103, the integrated 11–13 C continuous remodelling . PPA90 peak area decreases during the experiment, indicating a Above their ceiling temperature Tc, end-capped polymers are decline in polymer concentration with sonication time (Fig. 1a). potential candidates for mimicking this material-recycling behav- Such a decrease is consistent with mechanochemical scission fol- iour, with mechanical damage causing reversion to monomers. lowed by rapid unzipping to monomer. Moreover, a gradual Below Tc, a chemical initiator drives chain growth. Here, we show increase of a new peak close to the column dead-volume is also that polymer-to-monomer unzipping of a low-Tc poly(o-phthalal- observed in this case, presumably resulting from an increase in dehyde) (PPA)14,15 can be triggered by force-induced chain scis- monomer concentration. The gel-permeation chromatography sion5,16–18. The resulting monomer is subsequently repolymerized (GPC) data also show that a decrease in average molecular weight under suitable conditions to complete one cycle of use. The occurs preferentially for the larger polymers after a long time 1Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 2Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 3Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 4Department of Chemistry, University of Washington, Seattle, Washington 98195, USA, 5Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA, 6SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; †Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA. *e-mail: [email protected] NATURE CHEMISTRY | VOL 6 | JULY 2014 | www.nature.com/naturechemistry 623 © 2014 Macmillan Publishers Limited. All rights reserved. ARTICLES NATURE CHEMISTRY DOI: 10.1038/NCHEM.1938 Table 1 | Polymers used for initial study. molecular weight would also be expected for this polymer. If the change in Mw results from mechanical activation, the shorter polymer will retain its original molar mass, being too small to be force-activated. After 3 h of sonication, no significant change CHO O C was observed for PPA26 solutions, providing strong evidence CHO a, b O C O O that the depolymerization observed for PPA90 is triggered by a O mechanochemical process. n O L As a reference sample, PMA103 with similar molecular weight to the PPA (Fig. 1c) was sonicated under the same conditions. As previously shown, the mean molecular weight for this polymer Polymer Mn (kDa) Mw (kDa) PDI decreases, but the integrated intensity of the Mw distribution stays C nearly constant21. Figure 1d compares the normalized change in PPA26 16.5 25.6 1.6 the refractometer area with sonication time in each of the tested PPAC 58.2 89.6 1.5 90 polymers. PPAC displays a clear decrease in area while the areas PPAC 254 458 1.8 90 458 of the two controls remain unchanged, providing additional evi- L PMA103 86.4 103 1.2 dence that depolymerization to monomer is being triggered by C . mechanical force only for PPA . Preparation of PPA: BF3 OEt2,CH2Cl2, –78 8C, 2 h (a); pyridine, –78 8C, 2 h (b). Polymer collected 90 after precipitation into methanol and washing with methanol and diethyl ether. Polydispersity L index (PDI) ¼ Mw /Mn. Polymer name notation: C ¼ cyclic, L ¼ linear, no. ¼ Mw.PMA103 was Mechanistic study. For most polymers, mechanically induced chain prepared by single-electron transfer living radical polymerization21. Molecular weights were scission results in a pair of macroradicals that terminate by atom calculated by standard calibration with monodisperse polystyrene standards. abstraction or radical recombination5. PPA polymerization and depolymerization has been demonstrated through cationic and exposure to ultrasound. The residual macromolecules are chains anionic mechanisms, but not by a radical mechanism, raising from the original distribution, whose initial molecular weight was questions about the depolymerization mechanism. Unlike the close to the mechanically activated threshold. prevalence of radical intermediates in typical mechanochemical Because PPA is acid-sensitive, special care was taken to neutralize reactions, heterolytic bond scission (which, in the case of PPA, the solvent by stirring it with NaOH pellets (see Supplementary would generate reactive hemiacetalate and oxocarbenium C Section II for experimental details). As a control, PPA26 was end groups) was shown to partially occur in solid-state C sonicated under the same conditions as PPA90. If the reaction mechanochemistry of polyolefins at 77 K in the presence of is caused by acid or heat, a time-dependent reduction in tetracyanoethylene22–24. Such reactivity was also proposed for the a 1.5 b 5 min 1.4 5 min 10 min 10 min 15 min 1.2 1.2 15 min 20 min 20 min 25 min 1.0 0.9 30 min 25 min 35 min 0.8 30 min 40 min 35 min RI signal RI signal 0.6 45 min 0.6 40 min 50 min 45 min 0.4 50 min 0.3 0.2 0.0 0.0 0 50 100 150 200 250 0 50 100 150 200 250 M M w (kDa) w (kDa) c 1.8 d 1.2 5 min 1.5 10 min 1.0 15 min 20 min 1.2 25 min 0.8 30 min 0.9 35 min 0.6 40 min RI signal 45 min PMAL 0.6 0.4 103 50 min C % RI area remaining PPA 26 0.3 0.2 PPAC 90 0.0 0.0 0 50 100 150 200 250 0 1020304050 M w (kDa) Sonication time (min) C C L C C L Figure 1 | GPC studies of sonicated polymers. a,PPA90. b,PPA26. c,PMA103. d, Change in area ratio with sonication time for PPA90,PPA26 and PMA103. RI, refractive index detector. Times indicate total ‘on time’ of pulsed ultrasound conducted at 215 8C, polymer concentration 1 mg ml21 in THF, 8.7 W cm22. Final Mw values: 48.9 kDa (a), 23.6 kDa (b)and65.0kDa(c). The decrease in RI signal can only be observed for high-Mw PPA, indicating depolymerization is triggered only by mechanical force.
Recommended publications
  • Improvement of Devulcanization Yield During Reclamation Ofwaste Tires
    Global Journal of Researches in Engineering Chemical Engineering Volume 13 Issue 1 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4596 & Print ISSN: 0975-5861 Improvement of Devulcanization Yield during Reclamation of Waste Tires By Dr. Kalrenganathan Sharma Lone Star College University Park Abstract - Waste tire recycling has become a bigger environmental problem. Despite regulations waste tires are stockpiled and often are breeding ground for west Nile virus and mosquitoes that cause pandemic. A number of times waste tires are incinerated or pyrolysis. Reclamation of value in the rubber portion of the waste tires may be more profitable and more environmentally benign compared with incineration and fuel use methods. Devulcanization and depolymerization reactions can lead to recovery of polybutadiene and butadiene monomer. Competing parallel reactions after the devulcanization step is studied in more detail. Dynamics of the general Denbigh scheme of reactions in a CSTR is studied. The composition of the species involved is obtained as a function of time from model solutions. A general state space form is proposed for simultaneous series-parallel reactions. Types of instability that may arise depends on the eigenvalues of the system. The Eigenvalues of the sparse matrix indicate that the system is of the integrating type. Solutions can be obtained from the eigenvalues for 7 species. Information from the model solution can be used to optimize the yield of rubber during reclamation of rubber from waste tires. GJRE-C Classification : FOR Code: 900402 Improvement of Devulcanization Yield during Reclamation of Waste Tires Strictly as per the compliance and regulations of : © 2013.
    [Show full text]
  • There Are Four Types of Polymerization Reactions Addition Or Chain Grow
    Lecture 42 Polymerization Methods of Polymerization: There are four types of polymerization reactions Addition or chain growth polymerization, Coordination polymerization, Condensation or step growth polymerization and Copolymerization. Addition Polymerization: In this type of polymerisation, the molecules of the same monomer or different monomers add together on a large scale to form a polymer. The monomers normally employed in this type of polymerization contain a carbon-carbon double bond (unsaturated compounds, e.g., alkenes and their derivatives) that can participate in a chain reaction. Condensation Polymerization: This type of polymerization generally involves a repetitive condensation reaction (two molecules join together, resulting loss of small molecules) between two bi-functional monomers. These polycondensation reactions may result in the loss of some simple molecules as water, alcohol, etc., and lead to the formation of high molecular mass condensation polymers. 1 Thermodynamics of Reaction: Thermodynamics of polymerization determines the position of the equilibrium between polymer and monomer(s). The well-known thermodynamic expression is G = H - TS It yields the basis for understanding polymerization/depoly- merization behavior. Where ‘S’ is the disorder of the system, ‘H’ is heat energy and ‘T’ is temperature. For polymerization to occur (i.e., to be thermodynamically feasible), the Gibbs free energy of polymerization Gp < 0. If Gp > 0, then depolymerization will be favored. Enthalpy and Entropy: Standard enthalpy and entropy changes Hop and Sop are reported for reactants and products when Temperature is 25oC or 298K then the Monomer is Pure, bulk monomer or 1 M solution and Polymer is Solid amorphous or slightly crystalline. Thermodynamics of Depolymerization: Change in entropy is always less than zero (Sp < 0) for nearly all polymerization processes.
    [Show full text]
  • A Acrylonitrile-Butadiene-Styrene (ABS) Plastics, 44, 179 Active
    Index A Cationic polymerization Acrylonitrile-butadiene-styrene (ABS) alkene monomer, 286 plastics, 44, 179 carbonyl monomer, 213, 215 Active material, 76 chain transfer reaction, 151, 197 Additive co-initiator, 193 lubricant, 85, 287 commercial applications, 290 odorant, 85 friedel-crafts catalyst, 187 pigment, 85 initiators, 185 plasticizer, 85 kinetic chain length, 198 Anionic copolymerization, 236, 237, 259, 296, kinetics, 283 297 rate constant, 155, 205 Anionic polymerization reaction mechanisms, 191 carbonyl monomer, 213, 215 termination reaction, 162 chain transfer, 45, 197, 276, 280, 283 Cationic polymerization of epoxides initiator, 143, 170, 193, 198, 200, 201, 204, initiation, 277, 278, 280 208, 209, 211, 214, 215, 273 propagation, 278, 279, 280 kinetics, 196, 267 termination and transfer processes, 280 rate constant, 192 Chain copolymerization, 233, 236, reaction mechanisms, 191, 211, 231, 299 297 termination, 162, 188, 199, 200, 201, 203, Chain polymerization 204, 271, 285 free radical, 3, 9, 138, 150 Anionic polymerization of epoxides ionic, 3, 187, 276 chain transfer to monomer, 276 Chemical property degree of polymerization, 2, 171, 197, 198, chemical permeation, 61 274, 284, 285 chemical resistance, 61 exchange reaction, 274 moisture permeation, 62, 63 kinetics, 196, 204 moisture resistance, 62 reaction mechanisms, 191, 201, 211, 231, Chemical structure analysis by 299 chemical reaction method, 90 Arrhenius equation, 47, 169 electron spin resonance, 98 infrared spectroscopy (IR), 90–92 mass spectroscopy of MALDI-TOF MS, B 18, 19 Bond strength, 70 nuclear magnetic resonance spectroscopy (NMR), 95, 96, 98 Raman spectroscopy, 92, 93 C UV-visible spectroscopy, 93 Cardo polymer, 83, 87 Chromophores, 82, 93 Cationic copolymerization, 236, 237, 256–259, Cohesive energy density, 12 296 Commercial copolymers, 263 W.-F.
    [Show full text]
  • Block Copolymers Prepared by Free Radical Polymerization Using -Methylstyrene-Containing Precopolymer As Macroinitiator
    #2008 The Society of Polymer Science, Japan Block Copolymers Prepared by Free Radical Polymerization Using -Methylstyrene-containing Precopolymer as Macroinitiator By Shan JIANG, Jianping DENG, and Wantai YANGÃ A novel way to prepare block copolymers is presented. Copolymerizations of -methylstyrene (AMS) and glycidyl methacrylate (GMA) were carried out. The resulting copolymers, designated as poly(AMS-co-GMA) (PAG), were characterized by Fourier transform infrared spectroscopy (FT/IR), gel permeation chromatography (GPC), 1H NMR and thermogravimetric analyses (TGA). Based on TGA, two main degradations with two inflection points were observed at 178.20 C and 342.1 C in PAG, while only one degradation with an inflection point at 305.7 C on homopolymer of GMA (PGMA), indicating the depolymerization started with scission of weak bonds in PAG. When heated, the scission of those weak bonds gave birth to chain radicals, which could further initiate the polymerization of other monomers. On the basis of this finding, a series of block copolymers, PAG-block-PMMA (Mn ¼ 63100 g/mol, Mw=Mn ¼ 1:77) and PAG-block-PSt (Mn ¼ 44700 g/mol, Mw=Mn ¼ 1:63), were prepared by simply heating PAG in the presence of the second monomer. This simple method is expected to be applied to kinds of monomers, and it might be suitable even for industrial applications. KEY WORDS: Block Copolymer Synthesis / Radical Polymerization / a-Methylstyrene / Macroinitiator / The polymerization of monomers using macroinitiators onto the polymer substrates by free radical coupling reac- containing both appropriate polymer segments and initiating tions.20 Since this strategy is based on a free radical moieties provides an opportunity for the synthesis of a variety mechanism, it is certainly feasible to initiate other monomers of well-defined block and graft copolymers.
    [Show full text]
  • Perfectly Alternating Copolymer of Lactic Acid and Ethylene Oxide As a Plasticizing Agent for Polylactide
    Macromolecules 2001, 34, 8641-8648 8641 Perfectly Alternating Copolymer of Lactic Acid and Ethylene Oxide as a Plasticizing Agent for Polylactide Kevin Bechtold, Marc A. Hillmyer,* and William B. Tolman* Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431 Received August 20, 2001; Revised Manuscript Received October 1, 2001 ABSTRACT: The ring-opening polymerization of 3-methyl-1,4-dioxan-2-one (MDO) mediated by a catalytic system composed of Y[N(TMS)2]3 and benzyl alcohol (BnOH) led to a new polymer (PMDO) comprised of perfectly alternating lactic acid and ethylene oxide repeat units. Samples of PMDO were characterized by NMR spectroscopy, size exclusion chromatography (SEC), and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). In a series of MDO polymerizations ([MDO]0 ) 3.0Min toluene, between -30 and 60 °C), the equilibrium monomer concentrations were measured. The thermodynamic parameters for the polymerization reaction were determined: ∆Hp° )-12.1 ( 0.5 kJ -1 -1 -1 mol and ∆Sp° )-42 ( 2 J mol K . The glass transition temperature (Tg) of PMDO was determined to be ≈-24 °C by differential scanning calorimetry and found to vary little over the molecular weight range studied (3-21 kg/mol). Mixtures of low-molecular-weight PMDO and atactic polylactide (PLA) were prepared by solution casting and subsequent annealing significantly above the Tg’s of the individual components. Miscibility of PLA and PMDO was evinced by single Tg’s that were well-described by the Fox relationship for miscible blends. Because of its miscibility with PLA and low Tg, PMDO has potential as a macromolecular plasticizing agent for commercially relevant PLA.
    [Show full text]
  • Free Radical Polymerization
    Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am, NC 02/99 Dr. Christian Merten, Ruhr-Uni Bochum, 2019 www.ruhr-uni-bochum.de/chirality Polymerization reactions: Summary STEP GROWTH REACTION CHAIN GROWTH REACTION . Monomer with 2 . Monomer has one polymerizable groups polymerizable group . Multiple reactive chain . Active chain end, i.e. ends growth in one direction . Molecular weight increases slowly . High molecular weight Different mechanisms: only at high conversion . Radical polymerization . Cationic polymerization . Anionic polymerization . Coordinative polym. Macromolecular Chemistry | Dr. C. Merten, 2019 72 Free radical polymerization Typical examples monomer polymer Ethylene Vinyl chlorid Cl Acrylo nitrile C N Three step reaction: . Initiation Vinyl acetate . Chain growth . Termination Methyl acrylic acid Styrene Macromolecular Chemistry | Dr. C. Merten, 2019 73 Free radical polymerization: Initiation Photochemical activation of initiator Thermal activation of initiator Thermal initiation of polymerization Macromolecular Chemistry | Dr. C. Merten, 2019 74 Free radical polymerization: Initiation Important: Initiator radical lifetime at polymerization temperature Isopropyl percarbonate Azobisisobutyro nitrile Dibenzoyl peroxide Di-tert-butyl peroxide Cumolhydro peroxide Macromolecular Chemistry | Dr. C. Merten, 2019 75 Free radical polymerization: Growths and termination Chain growths Termination mechanisms a) Combination b) Disproportionation Macromolecular Chemistry | Dr. C. Merten, 2019 76
    [Show full text]
  • A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities
    molecules Review A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities Houliang Tang 1,2, Yi Luan 1,*, Lu Yang 3 and Hao Sun 3,* 1 School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; [email protected] 2 Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA 3 Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA; [email protected]fl.edu * Correspondence: [email protected] (Y.L.); Chrisun@ufl.edu (H.S.); Tel.: +01-352-281-4799 (H.S.) Academic Editors: Jianxun Ding, Yang Li and Mingqiang Li Received: 15 October 2018; Accepted: 2 November 2018; Published: 3 November 2018 Abstract: The field of controlled polymerization is growing and evolving at unprecedented rates, facilitating polymer scientists to engineer the structure and property of polymer materials for a variety of applications. However, the lack of degradability, particularly in vinyl polymers, is a general concern not only for environmental sustainability, but also for biomedical applications. In recent years, there has been a significant effort to develop reversible polymerization approaches in those well-established controlled polymerization systems. Reversible polymerization typically involves two steps, including (i) forward polymerization, which converts small monomers into macromolecule; and (ii) depolymerization, which is capable of regenerating original monomers. Furthermore, recycled monomers can be repolymerized into new polymers. In this perspective, we highlight recent developments of reversible polymerization in those controlled polymerization systems and offer insight into the promise and utility of reversible polymerization systems.
    [Show full text]
  • Anionic Copolymerization of A-Methylstyrene and 2, 3-Dimethylbutadiene
    Polymer Journal, Vol. 3, No. 4, pp 442-447 (1972) Anionic Copolymerization of a-Methylstyrene and 2, 3-Dimethylbutadiene Heimei YUKI, Yoshio OKAMOTO, Hidekazu TAKANO, and Koji OHTA Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan. (Received July 22, 1971) ABSTRACT: a-Methylstyrene(a-MeSt) and 2, 3-dimethylbutadiene (DMB) were copoly­ merized in THF and in hydrocarbon solvents with n-BuLi. The copolymer produced at 60°C in THF was composed of almost equimolar amounts of a-MeSt and DMB, if a-MeSt was charged in excess. In the copolymer a-MeSt and DMB were considered to be arranged alternately, and DMB was incorporated in the form of 1, 4-structure. In the copolymerization below 60°C the copolymer composition was affected by the ratio of initial monomer concentrations. The content of a-MeSt in the copolymer increased with decreasing polymerization temperature and reached 91% at -78°C. The copoly­ merization at 30°C gave the copolymer composed of (2: 1) a-MeSt and DMB under the existence of large excess of a-MeSt. It was presumed that the major part of the copolymer was composed of repeated sequences of [a-MeSt-a-MeSt-DMB]. In benzene a copolymer rich in DMB (71%) was obtained at 60°C. The addition of THF to the polymerization system in benzene decreased the content of DMB. KEY WORDS Anionic Copolymerization / a-Methylstyrene / 2, 3- Dimethylbutadiene / Alternating Copolymer / NMR / The authors have reported the anionic alter­ anionic copolymerization of a-MeSt and styrene nating copolymerizations1 including 1, l-di­ in THF and determined the monomer reactivity 3 phenylethylene2 or trans-stilbene (M2), which ratios around room temperature.
    [Show full text]
  • Controlled Free-Radical Polymerization at High Pressures: Synthesis And
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-2004 Controlled free-radical polymerization at high pressures : synthesis and properties of poly(α-substituted acrylates). Javid, Rzayev University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Rzayev, Javid,, "Controlled free-radical polymerization at high pressures : synthesis and properties of poly(α-substituted acrylates)." (2004). Doctoral Dissertations 1896 - February 2014. 1055. https://scholarworks.umass.edu/dissertations_1/1055 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CONTROLLED FREE-RADICAL POLYMERIZATION AT HIGH PRESSURES: SYNTHESIS AND PROPERTIES OF POLY(a-SUBSTITUTED ACRYLATES) A Dissertation Presented by JAVID RZAYEV Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY February 2004 Polymer Science and Engineering © Copyright by Javid Rzayev 2004 All Rights Reserved CONTROLLED FREE-RADICAL POLYMERIZATION AT HIGH PRESSURES: SYNTHESIS AND PROPERTIES OF POLY(a-SUBSTITUTED ACRYLATES) A Dissertation Presented by JAVID RZAYEV Approved as to style and content by:
    [Show full text]
  • Polymerization of Alpha.-Methylstyrene at High Pressures
    POLYMERIZATION OF ALPHA.-METHYLSTYRENE AT HIGH PRESSURES Thesis Presented for the Degree of DOCTOR OF PHILOSOPHY in the Faculty of Engineering in the University of London by ISY ELROY, B.Sc. (Eng.) Department of Chemical Engineering, Imperial College of Science and Technology, LONDON, S.W.7 October, 1961 ABSTRACT The free radical polymerization of alpha-methylstyrene has been studied at pressures up to 8000 atm. The initiator used in most of the experiments was azo-bis-isobutyronitrile, but tert-butyl-perbenzoate was employed at temperatures above 100°C. The existence of two limiting factors, the ceiling temperature for polymerization and the freezing of the monomer at high pressures, has been investigated. At temperatures above the ceiling tempera- ture the main product is dimer. The rate of dimerization is increased by pressure and temperature and straight lines are obtained for the log (rate) vs. pressure and vs. liT plots respectively. Below the ceiling temperature solid polymer is formed together with a small amount of low molecular weight liquid polymer, which is believed to be formed by a transfer to monomer reaction involving an allylio transfer mechanism. The freezing of the monomer has been investigated and a linear relationship between the freezing temperature and the pressure has been established. The dependence of the rate of polymerization on the initiator concentration is in agreement with existing results for styrene and alpha-methylstyrene, the order with respect to initiator being 0.44. Pressure increases the overall rate of reaction between 1500 atm. and 4700 atm. and there is a linear relation between log (rate) and the pressure in the range 3000 — 4500 atm.
    [Show full text]
  • Immolative Polymers
    SELF-IMMOLATIVE POLYMERS 1. Introduction In recent years, there has been significant interest in the development of stimuli- responsive polymers for a wide range of applications. For example, thermo- responsive polymers can serve as valves in microfluidic devices (1), whereas poly- mers responding to intrinsic biological stimuli such as enzymes, or changes in pH or redox potential, can be used to selectively deliver drug molecules to diseased sites in vivo (2). There are several established mechanisms by which polymers can respond to stimuli. The stimulus can trigger a change in the charge state or solubility of the polymer backbone or pendant functional group along the polymer backbone (Fig. 1a). For example, polyamines undergo protonation–deprotonation in a pH-dependent manner, which can result in water-soluble materials at neu- tral and acidic pH, and water-insoluble materials at basic pH (3,4). Alternatively, a stimulus can result in the cleavage of pendant groups along the polymer back- bone (Fig. 1b). For example, pendant cyclic acetal groups undergo hydrolysis at acid pH, resulting in the transformation of the pendant hydrophobic groups to hydrophilic ones, changing the polymer from water insoluble to water solu- ble (5). Stimuli can also trigger cleavage of the polymer backbone and ultimately its degradation into small molecules (Fig. 1c). For example, polymers with pH- sensitive acetals (6), reduction-sensitive disulfides (7), or photochemically cleav- able o-nitrobenzyl ester moieties (8) in their backbones have been reported. A limitation to most of the approaches described above is that multiple stimuli-mediated events are required to cause significant changes in the polymer properties.
    [Show full text]
  • Ring-Opening (Co)Polymerization of Γ-Butyrolactone: a Review Qilei Song, Junpeng Zhao, Guangzhao Zhang, Frédéric Peruch, Stéphane Carlotti
    Ring-opening (co)polymerization of γ-butyrolactone: a review Qilei Song, Junpeng Zhao, Guangzhao Zhang, Frédéric Peruch, Stéphane Carlotti To cite this version: Qilei Song, Junpeng Zhao, Guangzhao Zhang, Frédéric Peruch, Stéphane Carlotti. Ring-opening (co)polymerization of γ-butyrolactone: a review. Polymer Journal, Nature Publishing Group, 2020, 52 (1), pp.3-11. 10.1038/s41428-019-0265-5. hal-02431117 HAL Id: hal-02431117 https://hal.archives-ouvertes.fr/hal-02431117 Submitted on 9 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ring-opening (co)polymerization of γ-butyrolactone: a review 2 3 Qilei Song,† Junpeng Zhao,† Guangzhao Zhang,† Frédéric Peruch, ⁎‡, Stéphane Carlotti, ⁎‡ 4 5 †Faculty of Materials Science and Engineering, South China University of Technology, 6 Guangzhou 510640, People’s Republic of China 7 ‡Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France 8 9 10 * Corresponding author E-mail: [email protected], [email protected] 11 12 ABSTRACT 13 14 With increased environment concerns and the rising demands for sustainable polymers, e.g. 15 degradable polymers and chemically recyclable polymers, studies on ring-opening 16 polymerization (ROP) of cycle esters have been developed during last decades.
    [Show full text]