Composites - Trig Functions and Inverse Trig Functions
Total Page:16
File Type:pdf, Size:1020Kb
EVALUATING COMPOSITES - TRIG FUNCTIONS AND INVERSE TRIG FUNCTIONS paul vaz The table below lists some composites of trig functions and inverse trig functions:
sin 1 cos 1 tan 1 sin sin(sin 1 x) sin(cos 1 x) sin( tan 1 x) sin 1 (sin x) cos 1 (sin x) tan 1 (sin x) cos cos(sin 1 x) cos(cos 1 x) cos( tan 1 x) sin 1 (cos x) cos 1 (cos x) tan 1 (cos x) tan tan(sin 1 x) tan( cos 1 x) tan(tan 1 x) sin 1 (tan x) cos 1 (tan x) tan 1 (tan x) csc csc(sin 1 x) csc(cos 1 x) csc( tan 1 x) sec sec(sin 1 x) sec(cos 1 x) sec( tan 1 x) cot cot(sin 1 x) cot( cos 1 x) cot( tan 1 x)
We will refer to any composite as: outside function(inside function) Example: In tan(sin 1 x), 'tan' is the outside function, and 'sin 1 ' is the inside function.
Inside function is an inverse: Generally, for all composites in which the inside function is an inverse, we evaluate the composite for a given 'x' using a substitution for the inside function. The substitution and the definition of the inverse, leads to the construction of a right triangle that helps evaluate the composite easily. Example: Evaluate tan(sin 1 0.8) Solution: Let p = sin 1 0.8 (Substitution) Therefore, sin p = 0.8 (Definition) Construction of right triangle:
1 0.8
angle p 0.6
( Using the Pythagorean, the third side of the triangle is 1 0.82 0.6 ) Therefore, tan(sin 1 0.8) = tan(p) = 0.8/0.6 = 1.33.
Useful Results: 1. sin(sin 1 x) = x if 1 x 1 2. cos(cos 1 x) = x if 1 x 1 3. tan(tan 1 x) = x if x is any real number.
Example: Evaluate sin(sin 1 0.8)
Since 1 0.8 1, sin(sin 1 0.8) = 0.8.
Inside function is not an inverse: In this case, work the inside function first, and then apply the outside function to the result.
E xample: Evaluate sin 1 (tan ) 3 Solution: tan 3 1.732 3 Therefore, sin 1 (tan ) = sin 1 (1.732) (Not defined) 3
Useful Results: 4. sin 1 (sin x) = x if x 2 2 5. cos 1 (cos x) = x if 0 x 6. tan 1 (tan x) = x if x 2 2 Example: Evaluate tan 1 (tan ) 3 Since , tan 1 (tan ) = 2 3 2 3 3