Composites - Trig Functions and Inverse Trig Functions

Composites - Trig Functions and Inverse Trig Functions

<p> EVALUATING COMPOSITES - TRIG FUNCTIONS AND INVERSE TRIG FUNCTIONS paul vaz The table below lists some composites of trig functions and inverse trig functions:</p><p> sin 1 cos 1 tan 1 sin sin(sin 1 x) sin(cos 1 x) sin( tan 1 x) sin 1 (sin x) cos 1 (sin x) tan 1 (sin x) cos cos(sin 1 x) cos(cos 1 x) cos( tan 1 x) sin 1 (cos x) cos 1 (cos x) tan 1 (cos x) tan tan(sin 1 x) tan( cos 1 x) tan(tan 1 x) sin 1 (tan x) cos 1 (tan x) tan 1 (tan x) csc csc(sin 1 x) csc(cos 1 x) csc( tan 1 x) sec sec(sin 1 x) sec(cos 1 x) sec( tan 1 x) cot cot(sin 1 x) cot( cos 1 x) cot( tan 1 x)</p><p>We will refer to any composite as: outside function(inside function) Example: In tan(sin 1 x), 'tan' is the outside function, and 'sin 1 ' is the inside function.</p><p>Inside function is an inverse: Generally, for all composites in which the inside function is an inverse, we evaluate the composite for a given 'x' using a substitution for the inside function. The substitution and the definition of the inverse, leads to the construction of a right triangle that helps evaluate the composite easily. Example: Evaluate tan(sin 1 0.8) Solution: Let p = sin 1 0.8 (Substitution) Therefore, sin p = 0.8 (Definition) Construction of right triangle:</p><p>1 0.8</p><p> angle p 0.6</p><p>( Using the Pythagorean, the third side of the triangle is 1 0.82  0.6 ) Therefore, tan(sin 1 0.8) = tan(p) = 0.8/0.6 = 1.33.</p><p>Useful Results: 1. sin(sin 1 x) = x if  1  x  1 2. cos(cos 1 x) = x if  1  x  1 3. tan(tan 1 x) = x if x is any real number.</p><p>Example: Evaluate sin(sin 1 0.8)</p><p>Since  1  0.8  1, sin(sin 1 0.8) = 0.8.</p><p>Inside function is not an inverse: In this case, work the inside function first, and then apply the outside function to the result.</p><p> E xample: Evaluate sin 1 (tan ) 3  Solution: tan  3  1.732 3  Therefore, sin 1 (tan ) = sin 1 (1.732) (Not defined) 3</p><p>Useful Results:   4. sin 1 (sin x) = x if   x  2 2 5. cos 1 (cos x) = x if 0  x     6. tan 1 (tan x) = x if   x  2 2  Example: Evaluate tan 1 (tan ) 3      Since    , tan 1 (tan ) = 2 3 2 3 3</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us