Hindcast and Validation of Hurricane Ike (2008) Waves, Forerunner, and Storm Surge M
JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 4424–4460, doi:10.1002/jgrc.20314, 2013 Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge M. E. Hope,1 J. J. Westerink,1 A. B. Kennedy,1 P. C. Kerr,1 J. C. Dietrich,1,2 C. Dawson,3 C. J. Bender,4 J. M. Smith,5 R. E. Jensen,5 M. Zijlema,6 L. H. Holthuijsen,6 R. A. Luettich Jr.,7 M. D. Powell,8 V. J. Cardone,9 A. T. Cox,9 H. Pourtaheri,10 H. J. Roberts,11 J. H. Atkinson,11 S. Tanaka,1,12 H. J. Westerink,1 and L. G. Westerink1 Received 26 February 2013; revised 9 July 2013; accepted 12 July 2013; published 13 September 2013. [1] Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana-Texas coastline’s broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike’s complex and varied wave and surge response physics included: the capture of surge by the protruding Mississippi River Delta; the strong influence of wave radiation stress gradients on the Delta adjacent to the shelf break; the development of strong wind driven shore-parallel currents and the associated geostrophic setup; the forced early rise of water in coastal bays and lakes facilitating inland surge penetration; the propagation of a free wave along the southern Texas shelf; shore-normal peak wind-driven surge; and resonant and reflected long waves across a wide continental shelf.
[Show full text]