1 Supplementary Information Enhanced Limonene

Total Page:16

File Type:pdf, Size:1020Kb

1 Supplementary Information Enhanced Limonene Supplementary Information Enhanced limonene production in cyanobacteria reveals photosynthesis limitations Xin Wang, Wei Liu, Changpeng Xin, Yi Zheng, Yanbing Cheng, Su Sun, Runze Li, Xin-Guang Zhu, Susie Y. Dai, Peter M. Rentzepis1 and Joshua S. Yuan1 1To whom the correspondence should be addressed Peter M. Rentzepis: [email protected] (979)845-7250 Joshua S. Yuan: [email protected] (979)845-3016 Table of Contents: Supplementary Methods Supplementary Figure 1-6 Supplementary Dataset 1 Supplementary Table 1-3 Supplementary Files 1-4 References 1 Supplementary Methods Strains and plasmids construction. Strains and plasmids used in this study were summarized in Table S1. The maps and sequences of pWX1118 and pWX121 can be found in File S2 and S3. Plasmids were constructed using Gibson Assembly (NEB, Ipswich, MA) and primers used were designed using NEBuilder Assembly Tool (http://nebuilder.neb.com/). Limonene synthase (LS) was codon optimized for S. elongatus expression and synthesized by IDT (Coralville, IA). S. elongatus genome neutral site I targeting plasmids were constructed based on pAM2991 (from Golden lab), and neutral site II targeting plasmids were constructed based on pAM1579 (from Addgene). Cell absorbance spectra scan and optical density 200 µl of wild type or limonene-producing cells were used to measure the whole-cell absorbance wavelength scans using an Epoch Microplate Spectrophotometer (BioTek Instruments Inc., Vermont). The absorbance scans were normalized by cell density (OD730). All measurements were determined by averaging triplicates of independent cultures. Error bars in figures represent standard deviations. Model description and simulations. A kinetics model of MEP terpene biosynthesis was developed by extending the C3 photosynthesis kinetics model developed by Xin et al. (1). The current model was built with Simbiology in MATLAB (version 2008a). The sundials solver of Simbiology was chosen to solve the system. The solution of ODEs provided by sundials was the time evolution of the concentration of each metabolite in each compartment which in turn allows calculation of different reaction fluxes. In our model, the carbon input into terpene synthesis was channeled from photorespiratory pathways through malate synthase. The glyoxylate was first converted to malate, and further to pyruvate by malate dehydrogenase (Fig. S6). All pyruvate channeled from photorespiration was used for terpene synthesis through a simplified MEP derived terpene biosynthesis pathway (Fig. S6). The initial concentrations of metabolites and the kinetic parameters of the additional reactions used in this model were listed in the supplemental tables (Tables S2 and S3). The reaction rates of the additional enzymes were described using the Michaelis-Menten kinetics (File S4). In order to control carbon flux for terpene synthesis, we used glycolate dehydrogenase to control carbon input, and assumed that the pyruvate used for MEP pathway was only generated from photorespiration. By changing Vmax of glycolate dehydrogenase, the carbon flux into MEP pathway could be manipulated in the simulations. Protein preparation for proteomics. S. elongatus wild type and limonene producing lines were grown to log phase in 1 L Roux culture bottles as described above. 100 mL of each line was collected in triplicates, and centrifuged at 8000 rpm for 15 min at 4 °C. Cell pellets were resuspended in 2 mL Tris buffer (50 mM Tris- TM HCl, 10 mM CaCl2, 0.1 % Nonidet P-40, pH 7.6) supplemented with 1X Halt protease and phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL). Cells were lysed through 10 cycles of sonication with 30 seconds on and 2 min off on ice, and centrifuged at 13,000 g for 30 min at 4 °C. The supernatant was collected and transferred into a new centrifuge tube. Protein concentration was determined by Bradford assay (Thermo Scientific, Rockford, IL) following the manufactory’s instructions. Liquid chromatography-tandem mass spectrometry (LC-MS/MS). The Multidimensional Protein Identification Technology (MudPIT) based shotgun proteomics were performed similarly as Washburn et al. (2). For each sample, 100 μg of total protein was first 2 incubated with 8 M urea and 5 mM dithiothreitol (DTT) at 37 °C for an hour. The protein was then diluted 4 folds using Tris buffer (50 mM Tris-HCl, 10 mM CaCl2, pH 7.6), and subjected to trypsin digestion using Mass Spectrometry Grade Trypsin Gold (Promega, Madison, WI) with 1:100 w/w at 37 °C for 18 hours. The digested peptides were cleaned up using a Sep-Pak C18 plus desalting column (Waters Corporation, Milford, MA). A biphasic strong cation exchange/reversed phase capillary column was prepared to load the peptides with a pressure cell, followed by a two dimensional peptide separation as described previously (3). Peptide fractions were analyzed on a LTQ ion trap mass spectrometer (Thermo Finnegan, San Jose, CA) operated in the data-dependent acquisition mode. An MS2 method was used to record the full mass spectra over the range of 300- 1700 m/z. The 5 most abundant peaks were subjected to collision induced dissociation fragmentation for MS/MS analysis. The proteomics analyses were carried out with triplicate biological samples and consolidated in the final data analysis. Database search and spectral validation. A data processing pipeline was developed to analyze the peptide information. MS2 file of tandem mass spectra was first extracted from the raw data, and subsequently used for database search by ProLuCID (4) (version 1.0). A protein database were generated including S. elongatus proteins (2657 sequences) obtained from UniProt database and 37 common contaminants, and their reversed sequences (total 5388 sequences). The reverse database was included as a quality control system to restrain false positive discovery to 0.05. ProLuCID search was performed using a precursor mass tolerance of 100 ppm. And no peptide modifications were included in the search. The peptide/spectrum matches were filtered using DTASelect (5) (v. 2.0) with the criteria of DelCN ≥ 0.08 coupled with XCorr ≥ 1.8 for charge state +1, ≥ 2.5 for charge state +2, and ≥ 3.5 for charge state +3. A minimum of two peptides were needed to identify proteins. Analysis of protein differential expression. Protein differential expression was analyzed in PatternLab (6) (version 4.0.0.38) with spectral counts indicating protein abundance. The normalized spectral abundance factor (NSAF) (7) was applied to the biological triplicates to minimize the noise caused by protein length and sample-to- sample variation. TFold test was used to pinpoint the protein differential expression, in which the BH q-value and L-stringency were set to 0.05. Variable fold change was determined by the optimized F-stringency parameter. 3 Fig. S1. Limonene production in S. elongatus through stepwise metabolic engineering. (A) MEP pathway for IPP/DMAPP generation. S. elongatus does not encode a limonene synthase (LS) or geranyl pyrophosphate synthase (GPPS). Heterologous LS was introduced into S. elongatus genome to enable limonene synthesis. (B) Specific limonene productivity in different strains. Strain L111: ls driven by Ptrc promoter and integrated in neutral site I of S. elongatus genome; Strain L113: ls driven by Ptrc promoter in which the native RBS was replaced by a synthetic RBS sequence; L114: ls/gpps in a single operon driven by Ptrc promoter; L114/dxs: dxs driven by PlacO-1 promoter and integrated in neutral site II of strain L114 genome. 4 Fig. S2. GC-MS analysis of limonene production in engineered cyanobacteria. Figure represents a typical elution from the hydrocarbon absorption trap with cedrene as the internal standard. 5 Fig. S3. Normalized spectral count for limonene synthase in L1115 and L1118 cells. Normalized spectral count was calculated by dividing peptide spectral counts with the protein length of limonene synthase (543 amino acids). Data was obtained from biological triplicates with error bars indicating standard deviations. The two-tailed t-test showed a significant difference between L1115 and L1118 LS levels (p value = 0.0005). 6 Fig. S4. Cell growth and limonene productivity of L1118. (A) Growth of wild type and L1118 cells. (B) Daily limonene productivity in L1118 cells. Error bars indicate standard deviations. One- way ANOVA (p < 0.0001) showed that limonene production is significantly different in at least two time points. 7 Fig. S5. Standard curve used to calculate limonene recovery rate. Limonene concentrations of 10, 50, 100, and 250 µg/mL were used to spike the S. elongatus wild type cells. Limonene was collected and measured as described in the methods. 8 Fig. S6. Pathway in kinetics modeling. The current model is an expansion of a previous C3 photosynthesis kinetics model (1). Carbon flux into MEP derived terpene biosynthesis was controlled by pyruvate generation through glycolate dehydrogenase in photorespiration. A simplified downstream terpene biosynthesis pathways were used to simulate downstream terpene response against MEP carbon flux. 9 Dataset S1. Differential expression of proteins in WT and L1118 cells. The statistical analysis of changes in protein expression was conducted by PatternLab (see methods), and ranked by protein fold change in the dataset. Each row is a separate protein, and the columns from left to right show the UniProt ID of the protein, fold change between WT and L1118 proteins, p-value calculated from PatternLab showing the statistical difference between WT and L1118 proteins, the normalized spectral
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • PRODUCT INFORMATION Geranyl Pyrophosphate (Triammonium Salt) Item No
    PRODUCT INFORMATION Geranyl Pyrophosphate (triammonium salt) Item No. 63320 CAS Registry No.: 116057-55-7 Formal Name: 3E,7-dimethyl-2,6-octadienyl- diphosphoric acid, triammonium salt Synonyms: GDP, Geranyl Diphosphate, GPP MF: C10H20O7P2 · 3NH3 FW: 365.3 O O Purity: ≥90% (NH +) – O P O P O Supplied as: A solution in methanol 4 3 Storage: -20°C O– O– Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Geranyl pyrophosphate (triammonium salt) is supplied as a solution in methanol. To change the solvent, simply evaporate the methanol under a gentle stream of nitrogen and immediately add the solvent of choice. A stock solution may be made by dissoving the geranyl pyrophosphate (triammonium salt) in the solvent of choice. Geranyl pyrophosphate (triammonium salt) is slightly soluble in water. Description Geranyl pyrophosphate is an intermediate in the mevalonate pathway. It is formed from dimethylallyl pyrophosphate (DMAPP; Item No. 63180) and isopentenyl pyrophosphate by geranyl pyrophosphate synthase.1 Geranyl pyrophosphate is used in the biosynthesis of farnesyl pyrophosphate (Item No. 63250), geranylgeranyl pyrophosphate (Item No. 63330), cholesterol, terpenes, and terpenoids. Reference 1. Dorsey, J.K., Dorsey, J.A. and Porter, J.W. The purification and properties of pig liver geranyl pyrophosphate synthetase. J. Biol. Chem. 241(22), 5353-5360 (1966). WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available.
    [Show full text]
  • Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
    International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C.
    [Show full text]
  • • Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
    • Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo.
    [Show full text]
  • Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools—A Review
    Journal of the American Society of Brewing Chemists The Science of Beer ISSN: 0361-0470 (Print) 1943-7854 (Online) Journal homepage: http://www.tandfonline.com/loi/ujbc20 Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools—A Review Nils Rettberg, Martin Biendl & Leif-Alexander Garbe To cite this article: Nils Rettberg, Martin Biendl & Leif-Alexander Garbe (2018) Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools—A Review , Journal of the American Society of Brewing Chemists, 76:1, 1-20 To link to this article: https://doi.org/10.1080/03610470.2017.1402574 Published online: 27 Feb 2018. Submit your article to this journal Article views: 1464 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ujbc20 JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018, VOL. 76, NO. 1, 1–20 https://doi.org/10.1080/03610470.2017.1402574 Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools— A Review Nils Rettberga, Martin Biendlb, and Leif-Alexander Garbec aVersuchs– und Lehranstalt fur€ Brauerei in Berlin (VLB) e.V., Research Institute for Beer and Beverage Analysis, Berlin, Deutschland/Germany; bHHV Hallertauer Hopfenveredelungsgesellschaft m.b.H., Mainburg, Germany; cHochschule Neubrandenburg, Fachbereich Agrarwirtschaft und Lebensmittelwissenschaften, Neubrandenburg, Germany ABSTRACT KEYWORDS Hops are the most complex and costly raw material used in brewing. Their chemical composition depends Aroma; analysis; beer flavor; on genetically controlled factors that essentially distinguish hop varieties and is influenced by environmental gas chromatography; hops factors and post-harvest processing. The volatile fingerprint of hopped beer relates to the quantity and quality of the hop dosage and timing of hop addition, as well as the overall brewing technology applied.
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • Fragrance Compositions Having Antimicrobial Activity
    ^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 950 399 A2 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI * A61 K 7/46, A61 K 7/48, 20.10.1999 Bulletin 1999/42 A61 L 9/01 (21) Application number: 99301293.9 (22) Date of filing: 23.02.1999 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU • Nakatsu, Tetsuo MC NL PT SE Chappaqua, NY 06749 (US) Designated Extension States: • Van Loveren, Augustinus G. ALLTLVMKROSI Bedford, NY 10506 (US) • Kang, Raphael K. L. (30) Priority: 23.02.1998 US 27981 Northvale, NJ 07647 (US) • Cilia, Alba T. (71) Applicants: River Edga, NJ 07661 (US) • Takasago Institute For Interdisciplinary Science Inc. (74) Representative: Bryer, Kenneth Robert et al Rockleigh, NJ 07647-0932 (US) K.R. Bryer & Co. • Takasago International Corp. 7 Gay Street Minato-Ku, Tokyo 108-8588 (JP) Bath BA1 2PH (GB) (54) Fragrance compositions having antimicrobial activity (57) A fragrance composition having antimicrobial sential oils containing non-aromatic terpenoids as a ma- activity comprises between 3 and 20% phenolic com- jor constituent. The fragrance composition further has pounds, and between 20 and 80% non-aromatic terpe- an Odor Intensity Index of less than 100, and an Odor noids. The fragrance composition may also, either alter- Evaluation Acceptability Index of greater than 50. The natively or additionally, include essential oils containing fragrance composition is suitable for use in a variety of phenolic compounds as a major constituent, and/or es- products.
    [Show full text]
  • BB 451/551 Lecture 35 Highlights
    Kevin Ahern's Biochemistry (BB 451/551) at Oregon State University http://oregonstate.edu/instruct/bb451/summer13/lectures/highlightsglycer... Glycerolipid and Sphingolipid Metabolism 1. Phosphatidic acid is an immediate precursor of CDP-diacylglycerol, which is a precursor of the various glycerophospholipids . CTP combines with phosphatidic acid to yield a pyrophosphate and CDP-Diacylglycerol. Activation by CDP yields a high energy activated intermediate that can be readily converted to phosphatidyl glycerophospholipids. 2. From CDP-diacylglycerol, phosphatidyl serine can be made, as canphosphatidyl ethanolamine and phosphatidyl choline. Synthesis of phosphatidyl choline from phosphatidyl ethanolamine requires methyl groups donated by S-Adenoysyl-Methionine (SAM). Loss of the methyl groups by SAM yields S-Adenosyl-Homocysteine (I incorrectly said S-adenosyl-homoserine in the lecture). 3. Phosphatidyl ethanolamine (and phosphatidyl choline - derived from phosphatidyl ethanolamine) can both be made independently of phosphatidic acid biosynthesis. For this pathway, CDP-ethanolamine is the activated intermediate and the phosphoethanolamine of it is added to diacylglycerol to form phosphatidylethanolamine. Phosphatidyl choline can be made by the same methylation scheme in point 4. 4. Sphingolipids are synthesized beginning with palmitoyl-CoA and serine. Addition of a fatty acid to the amine group yields a ceramide. Addition of sugars to a ceramide yields either a cerebroside (single sugar added) or a ganglioside (complex sugar added). 5. Deficiencies in enzymes that degrade sphingolipids (particularly cerebrosides and gangliosides) are linked to neural disorders. One such disorder is Tay-Sachs disease. 6. Cholesterol is an important component of membranes, particularly in the brain. Cholesterol can be synthesized totally from acetyl-CoA. 7. Steroids include all compounds synthesized from cholesterol.
    [Show full text]
  • Effect of Supplementing Terpenoid Biosynthetic Precursors on the Accumulation of Bilobalide and Ginkgolides in Ginkgo Biloba
    Journal of Biotechnology 123 (2006) 85–92 Effect of supplementing terpenoid biosynthetic precursors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures Seung-Mi Kang a, Ji-Yun Min a, Yong-Duck Kim a, Dong-Jin Park a, Ha-Na Jung a, Chandrakant S. Karigar b, Yeong-Lae Ha c, Seon-Won Kim d, Myung-Suk Choi a,∗ a Division of Forest Science, Gyeongsang National University, Jinju 660-701, South Korea b Department of Biochemistry, Bangalore University, Bangalore 560001, India c Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea d Department of Food Science and Nutrition, Gyeongsang National University, Jinju 660-701, South Korea Received 26 July 2005; received in revised form 29 September 2005; accepted 24 October 2005 Abstract The effect of precursor feeding on the production of bilobalide and ginkgolides was studied with suspension cell cultures of Ginkgo biloba. The precursors greatly influenced the productivity of bilobalide and ginkgolides. Precursor supplementation increased the accumulation of both bilobalide and ginkgolides, and with positive effect on cell growth. The GA accumulation by cell cultures was influenced by precursors upstream in the metabolism, whereas the BB accumulation was under the influence of downstream precursors of the terpenoid biosynthetic pathway. Furthermore, precursor feeding modified the ratios of the BB, GA and GB in cells and cell cultures of G. biloba. The studies also aid in understanding effect of precursor feeding on the bilobalide and
    [Show full text]
  • Lipid Metabolism
    LIPID METABOLISM OXIDATION OF LONG-CHAIN FATTY ACIDS Two Forms of Carrying Fatty Acids: PLASMA ALBUMIN: Can carry up to 10 molecules of fats in the blood serum. o Also carries varies drugs and pharmacological agents. The albumin capacity for carrying these drugs must be considered with polypharmacy. ACTIVATION OF FATTY ACIDS: Fats are delivered to cells as free fats. They must be activated before they can be burned. Acyl-CoA Synthetase: Free Fat ------> Acyl-CoA Thioester, which has a high-energy bond. o ATP is required in the synthesis. o This step is fully reversible, as ATP and the Acyl-CoA Thioester product both have equivalent energy levels. o To prevent the reversibility, the reaction is coupled to Pyrophosphatase, which catalyzes Pyrophosphate ------> 2 Inorganic Phosphate, which breaks a high energy bond to drive the reaction to the right. TRANSLOCATION OF FATTY ACYL-CoA THIOESTER: The Acyl-CoA must get into the mitochondrial matrix. Once activated, the Acyl-CoA can get through the out mitochondrial membrane by traversing through a Porin protein. Carnitine Intermediate: Only Long-chain fatty acids are converted to carnitine as an intermediate. Short-chain fats can traverse the inner membrane directly: o INTERMEMBRANE SPACE: Carnitine Acyl Transferase I: Acyl-CoA ------> Acyl Carnitine. Carnitine is a simpler structure than Coenzyme-A. The fat is esterified to carnitine, temporarily, for the purpose of transport. o Translocase: Only recognizes Acyl-Carnitine. It translocated the carnitine structure through the inner membrane to the matrix. o MITOCHONDRIAL MATRIX: Carnitine Acyl Transferase II: Acyl- Carnitine ------> Acyl-CoA o In the matrix the fat is esterified back to Coenzyme-A.
    [Show full text]
  • A Study on the Biosynthesis of Camphor
    A STUDY ON THE BIOSYNTHESIS OF CAMPHOR By THERESE MARY ATLAY B.Sc.(Hons.) University of Exeter, 1976. A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Chemistry. We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May 1983. © Therese Mary Atlay, 1983. In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of OH Q^NA i The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date Starvd r^Sib DE-6 (3/81) - ii - ABSTRACT. This thesis describes an investigation of the biosynthesis of camphor. Camphor, a bicyclic monoterpene, has been shown to be bio- synthesised from.geranyl pyrophosphate or its isomers (neryl pyro• phosphate or linaloyl pyrophosphate) and several mechanisms have been proposed for this cyclisation process. geranyl pyrophosphate camphor In an attempt to differentiate the origin of the C(8) and C(9) methyl groups,, feeding experiments with appropriately labelled pre- cursors were attempted. The two precursors used were [2- H^J-mevalonic r 2 i acid and [8- H^J-linalool.
    [Show full text]
  • De Novo Production of the Plant-Derived Alkaloid Strictosidine in Yeast
    De novo production of the plant-derived alkaloid strictosidine in yeast Stephanie Browna, Marc Clastreb, Vincent Courdavaultb, and Sarah E. O’Connora,1 aDepartment of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom; and bÉquipe d’Accueil EA2106, “Biomolécules et Biotechnologies Végétales,” Université François-Rabelais de Tours, 37200 Tours, France Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved January 13, 2015 (received for review December 9, 2014) The monoterpene indole alkaloids are a large group of plant-derived abundance of available genetic tools for these organisms (21, 22). specialized metabolites, many of which have valuable pharmaceuti- We chose to use S. cerevisiae as a host because functional ex- cal or biological activity. There are ∼3,000 monoterpene indole alka- pression of microsomal plant P450s has more precedence in yeast loids produced by thousands of plant species in numerous families. (23). Additionally, plants exhibit extensive intracellular compart- The diverse chemical structures found in this metabolite class origi- mentalization of their metabolic pathways (24), and the impact nate from strictosidine, which is the last common biosynthetic inter- that this compartmentalization has on alkaloid biosynthesis can mediate for all monoterpene indole alkaloid enzymatic pathways. only be explored further in a eukaryotic host (25). To enhance Reconstitution of biosynthetic pathways in a heterologous host is genetic stability, we used homologous recombination to integrate a promising strategy for rapid and inexpensive production of com- the necessary biosynthetic genes under the control of strong plex molecules that are found in plants. Here, we demonstrate how constitutive promoters (TDH3, ADH1, TEF1, PGK1, TPI1)into strictosidine can be produced de novo in a Saccharomyces cerevisiae the S.
    [Show full text]