De Moivre S Theorem and Its Applications
Total Page:16
File Type:pdf, Size:1020Kb
UNIT I
DE MOIVRE’S THEOREM AND ITS APPLICATIONS
DE MOIVRE'S THEOREM AND ITS APPLICATIONS
Learning objectives:
1. To understand the origin of DeMoivre’s theorem
2. To study the definition and proof of DeMoivre’s theorem
3. Employ DeMoivre’s theorem in a number of applications such as:
Raising a complex number to a power.
Finding roots of complex numbers.
1 Positioning the roots of a complex number on an Argand diagram.
Finding the nth roots of a complex number.
Representing a complex number in exponential form.
Expressing Cosn, Sinn and tann in terms of Cos, Sin and tan.
Introduction
In this module we introduce De Moivre’s theorem and some of its applications. De Moivre is a famous French Mathematician from the
1700's. He was a friend of Isaac Newton and was famous for his work with complex numbers, trigonometry and the theory of probability.
De Moivre's theorem links complex numbers and trigonometry.
Let z1 and z2 be two complex numbers. Then they can be represented as
z1= r 1( Cos q 1 + i Sin q 1 )
z2= r 2( Cos q 2 + i Sin q 2 )
Where z1= r 1 , z 2 = r 2 , arg( z 1) =q 1 . arg(z 2 ) =q 2
2 Now z1 z 2= r 1 r 2( Cos q 1 + i Sin q 1)( Cos q 2 + iSin q 2 )
r r轾 Cosq Cos q + i2 Sin q Sin q + iCos q Sin q + iSin q Cos q = 1 2臌 1 2 1 2 1 2 1 2
= r1 r 2臌轾 Cosq 1 Cos q 2 - Sin q 1 q 2 + i( Cos q 1 Sin q 2 + iSin q 1 Cos q 2 )
z1 z 2= r 1 r 2臌轾 Cos( q 1 + q 2) + iSin ( q 1 + q 2 )
\z1 z 2 = r 1 r 2 , arg( z 1 z 2) =( q 1 + q 2 )
Inference
\z1 z 2 = z 1 z 2 , arg( z 1 z 2) = arg( z 1) + arg( z 2 ) ie.,
(1) The modulus of the product of two complex numbers is the product of
their moduli.
(2) The argument of the product of two complex numbers is the sum
of their arguments.
Using these facts we can find the square of a complex number (in polar form).
Let z= r( Cos q+ iSin q) where z = r and arg(z) =q
Then z2= r 2 ( Cos q+ iSin q)2
2 2 2 2 = r臌轾 Cosq+ i Sin q+ 2iSin q Cos q
3 2 2 2 = r臌轾 Cosq- Sin q+ i2Sin q Cos q
= r2 [ Cos 2q+ iSin 2 q]
It is clear that z2= r 2 and arg( z 2 ) = 2 q
This concept can be used to find any positive integer power of z.
De Moivre's Theorem
Let n be any rational number, positive or negative, then
(Cos +i Sin )n = Cos n + i Sin n
Proof
Case(i) when n is a positive integer. We prove the theorem by mathematical induction. i.e. we wish to show that
(Cos + iSin )n = Cos n + i Sin n
When n = 1 we have
(Cos + i Sin )1 = Cos 1 + i Sin 1 = Cos + i Sin
Which is true, so the theorem is true for n=1
Now assume that the theorem is true for n=k, where k is a non-negative integer. Then we have.
(Cos + i Sin )k = Cos k + iSin k
4 Multiplying both sides by (Cos + i Sin ) we get
(Cos + i Sin )k+1 = (Cos k + i Sink) (Cos + i Sin)
= (Cos (k) Cos - Sin (k) Sin ) + i (Sin(k) Cos + Cos (k) Sin
= Cos (k + ) + i Sin (k + )
= Cos (k+1) + i Sin (k+1)
So, if the theorem is true for n=k, it is true for n=k+1. Hence by the principle of mathematical induction the theorem is true for all n.
Case (ii) When n is a negative integer
Let n = -m and m > 0
Now (Cosq+ iSin q)n =( Cos q+ iSin q)- m
1 = m (Cosq+ iSin q)
1 = (Cos mq+ iSin m q)
Cos mq- iSin m q = (Cos mq+ iSin m q)( Cos m q- iSin m q)
Cos mq- iSin m q = Cos2 mq- i 2 Sin 2 m q
5 Cos(mq ) - iSin m q = Cos2 mq+ Sin 2 m q
= Cos( mq) - iSin (m q )
= Cos(- m q) + iSin( - m q)
= Cos nq+ iSin n q
Case (iii) When ' n ' is a fraction
p Let n = where p is any positive integer and q any non zero integer. q
From case (1) we have (Cosq+ iSin q)p =( Cos p q+ iSin p q)
p p = Cos qq+ iSin q q q q
q 骣 p p = 琪Cosq+ iSin q 桫 q q
Now taking qth root of both sides, (Cos +Sin ) p/q has one of its value
p p = Cosq + iSin q q q
p n Now writing =n we get( Cos q+ iSin q) = Cos n q+ iSin n q q
Hence the theorem.
6 Application of De Moivre's Theorem
De Moivre’s theorem is an important result in the field of complex numbers and it has practical applications.
1. To find the positive powers of a complex number.
Example: Find z10 if z = 1-i
Let 1-i = r (Cos + i Sin )
Equating real and imaginary parts we get
r Cos = 1 r Sin = -1
r2(Cos2 + Sin2) = 1+1
r2 = 2
r = 2
Now
rSin q = -1 tan = -1 r Cos q
-p = 4
z= 2
7 -p arg (z) = 4
� 骣p- 骣 p \1 - i = 2犏 Cos琪 + iSin 琪 臌 桫4 桫 4
Applying De Moivre's theorem we get
10 10 � 骣p- 骣 p (1- i) =( 2) 犏 Cos 10琪 + iSin10 琪 臌 桫4 桫 4
5 � 骣p5 - 骣 p 5 = 2犏 Cos琪+ iSin 琪 臌 桫2 桫 2
� 骣p5 - 骣 p 5 = 32犏 Cos琪+ 2 p + iSin 琪 + 2 p 臌 桫2 桫 2
� 骣p- 骣 p = 32犏 Cos琪+ iSin 琪 臌 桫2 桫 2
閜 骣-p = 32犏 Cos- iSin 琪 臌 2桫 2
= 32( 0+ i( - 1))
(l-i)10 = -32i
2. To find the nth roots of a complex number
Let z= r( Cos q+ iSin q)
8 = then z1/n= r 1/n [ Cos q+ iSin q]1/n
1/ n 靟 轾+2k p 轾 q + 2k p = r睚 Cos犏+ iSin 犏 where k is an integer. 铪 臌n 臌 n
Since Sine and Cosine functions are Cyclic and repeat with every 2.
To get the n different roots of z, one only needs to consider values of k from 0 to n-1.
Example: Find the three cube roots of unity.
1 = 1 + i 0
1 = 1 (Cos 0 + i Sin 0)
3 3 � 骣0p 2 + k 骣 0 p 2 k 1= 1犏 Cos琪 + iSin 琪 臌 桫3 桫 3
k = 0, 1, 2
= Cos 0 +i Sin 0 when k=0,
2p 2 p Cos+ iSin when k = 1, 3 3
4p 4 p and Cos+ iSin when k = 2 3 3
-1 3 - 1 3 = 1, +i , - i 2 2 2 2
Example
9 Find all complex roots of 27i
27 i = 0 + 27i
27i= 02 + 27 2 = 27
p rSin = 27 arg (27i) = 2 27 Sin = 27 骣 p p Sin =1 27i = 27琪Cos+ iSin 桫 2 2 Hence = /2
Let z = r (Cos + i Sin ) So that z3 = 27i
By De Moivre’s theorem
r3 (Cos 3 + i Sin 3 ) = 27i
= 27 (Cos /2 + i Sin/2)
r3 = 27 r = 3
Cos 3 = Cos /2, Sin 3 = Sin /2
3 = /2
Hence 3 = /2 + 2k
Case(i) when k =0
3 = /2
10 = /6
z1 = 3(Cos /6 + i Sin /6)
3 3 3 = 3 (3/2+i ½ ) = + i 2 2
Care (ii) When k = 1
p 3q= + 2 p x1 2 5p 3q= 2 骣 5p p \z2 = 3琪 Cos + iSin 桫 6 6
骣- 3 1 = 3琪 +i 桫2 2
-3 3 3 z= + i 2 2 2
Case (iii) When k = 2
p 3q= + 2 p x 2 2
p = +4 p 2
9p 3q= 2
骣 3p 3 p \z3 = 3琪 Cos + iSin 桫 2 2
11 = 3 (0+i(-1)
z3 = -3i
The complex cube roots of 27i are
3 3 3 z= + i 1 2 2
-3 3 3 z= + i 2 2 2
z3 = -3i
Example 2:
Find all complex fourth roots of -16
-16 = -16 + i0
= r( Cosq+ iSin q)
r Cos = -16 r Sin = 0
r2( Cos 2q+ Sin 2 q) = 256
r2 = 256 r = 16
Now 16 Cos = -16
-16 Cos = 16
12 Cos = -1
= Cos-1(-1) =
-16 = 16 (Cos + i Sin )
Fourth roots of 16 have modulus
4 16= 2 and the possible arguments are
p p +2 p 3 p p + 4 p 5 p p + 6 p 7 p ,= , = , = 4 4 4 4 4 4 4
Hence fourth roots of -16 are:
閜 骣 p z1 = 2犏 Cos琪 + iSin 臌 桫4 4
= 2+ 2 i
轾 3p 3 p z2 = 2 Cos + iSin 臌犏 4 4
= - 2+ 2 i
轾 5p p z3 = 2 Cos + iSin 臌犏 4 4
= - 2- 2 i
轾 7p 7 p z4 = 2 Cos + iSin 臌犏 4 4
13 = 2- 2 i
3. To prove trigonometric identities
Certain trigonometric identities can be derived using DeMoivre's theorem. We can express Cos n, Sin n and Tan n in terms of Cos , Sin and Tan .
Example
1. Prove that Cos 5 = Cos5 - 10 Cos3 Sin2 + 5 Cos Sin4
2. Prove that Sin 5 = 16 Sin5 - 20Sin3 + 5Sin
tanq- 10 tan3 q+ tan 5 q 3. Prove that tan 5 = 1- 10 tan2 q+ 5tan 4 q
Solution:
1) Let C = Cos and S = Sin
Cos 5 = Real part of (Cos + iSin )5
= Re (C + iS)5
5 4 3 2 2 3 4 5 = Re (C + 5C1C (iS) + 5C2 C (iS) + 5C3 C (iS) + 5C4 (iS) + (iS)
= Re (C5 + 5C4 iS + 10 C3i2S2 + 10 C2i3S3 + 5Ci4S4 + i5S5)
= Re (C5 + 5C4Si+10C3(-1) S2 + 10C2(-i) S3 + 5C(1) S4 + iS5)
Cos 5 = Re(C+5C4Si-10C3S2-10C2S3i + 5CS4 + iS5)
14 = C5 – 10C3S2 + 5CS4
= Cos5 - 10 Cos3 Sin2 + 5Cos Sin 4
It is to be noted that, the right hand side can be expressed
entirely in terms of Cos by substituting Sin2 = 1- Cos2 and Sin4 =
(1 - Cos2)2
Cos 5 = Cos5 - 10 Cos3 (1-Cos2) + 5 Cos (1-Cos2)2
= Cos5 - 10Cos3 + 10 Cos5 + 5 Cos(1-2 Cos2 + Cos4)
= Cos5 - 10 Cos3 + 10Cos5 + 5 Cos - 10Cos3 + 5Cos5
Cos 5 = 16 Cos5 - 20 Cos3 + 5 Cos
2. Sin 5 = Imaginary part of (Cos 5 + i Sin 5)
= Im (Cos + i Sin)5
= Im (C + is)5
= Im (C5 + 5C4 Si – 10C3S2 – 10C2 S3i + 5CS4 + is5)
= 5C4 S-10C2S3 + S5
Sin 5 = 5 Cos4 Sin - 10 Cos2Sin3 + Sin5
If required, the right hand side can be expressed entirely in terms of
Sin by substituting Cos2 = 1-Sin2, and Cos4 = (1-Sin2)2
15 Sin 5 = 5 (1-Sin2)2 Sin-10 (1-Sin2) Sin3 + Sin5
= 5(1-2Sin2 + Sin4) Sin - 10(1-Sin2) Sin3 + Sin5
= 5 Sin-10Sin3+5Sin5-10Sin3+10 Sin5+Sin5
= 16 Sin5 - 20Sin3 + 5Sin
Sin 5q 5Cos4 q Sin q- 10Cos 2 q Sin 3 q+ Sin 5 Q tan 5 = = Cos5q Cos5q- 10Cos 3 q Sin 2 q+ 5Cos q Sin 4 q
Dividing every term on Numerator and denominator by Cos5 we get
tanq- 10 tan3 q+ Tan 5 q Tan 5q= 1- 10 tan2 q+ 5tan 4 q
3. Exponential form of a complex number.
If is measured in radians both Cos and Sin can be expressed as an infinite series in powers of as follows:
q2 q 4 q 6( - 1) n- 1 q 2n - 2 Cosq= 1 - + - + ... + + ... .and 2! 4! 6! (2n- 2)!
q3 q 5 q 7( - 1) n- 1 q 2n - 1 Sinq=q- + - + .... + + .... 3! 5! 7! (2n- 1)!
The exponential series is given by
x x2 x 3 x n- 1 ex = 1 + + + + . ... + + .. ... 1! 2! 3! (n- 1)!
16 If we replace x by i, we get
(iq)2( i q) 3( i q) n- 1 eiq = 1 + i q+ + + ... + + ... 2! 3! (n- 1)!
q2i q 3 q 4 q 5 = 1+ i q- - + + i + ...... 2! 3! 4! 5!
骣q2 q 4 骣 q 3 q 5 = =琪1 - + - ... + i 琪 q - + .... 桫2! 4! 桫 3! 5!
eiq = Cos q+ iSin q , it is known as Euler’s formula
It is to be noted that if z = Cos+iSin then zn = (Cos + i Sin)n
= Cosn + i Sin n
= eni
and if z = r (Cos + i Sin) then
z = rei and zn = rneni
The form rei is known as the exponential form of a complex number and is linked to polar form very clearly.
Another result that can be derived from the exponential form of complex number is the following.
eiq = Cos q+ iSin q (1)
17 e-i q = Cos( -q) + iSin ( -q)
e-i q = Cos q- iSin q (2)
(1) + (2)
ei + e-i = 2Cos
eiq+ 2 - 1 q \Cos q= 2
(1) - (2)
ei - e-i = 2 i Sin
Additional Problems:
3 (1) 骣 p Simplify 琪Cosp / 6 + iSin 桫 6
3 骣 p p3 p 3 p 琪Cos+ iSin = Cos + iSin 桫 6 6 6 6
p p = Cos+ iSin 2 2
= 0 + i
= i
(2) Find the powers of (3+ i)3
3+ i = r( Cos q+ iSin q)
r Cosq= 3 rSin q= 1
18 2 r2( Cos 2q+ Sin 2 q) =( 3) + 1 2
= 3 + 1
r2 = 4
\r = 4 = 2
rSin q 1 = r Cosq 3
1-1 骣 1 tanq= \q= tan 琪 3桫 3
= 30o
p q= 6
3 3 閜骣 p \( 3 + i) =犏 2琪 Cos + iSin 臌桫 6 6
3 轾 3p 3 p = 2 Cos+ iSin 臌犏 6 6
骣 p p = 8琪 Cos+ iSin 桫 2 2
= 8(0 + i)
= 8i
(3) Show that Cos 3 = 4 Cos3 - 3 Cos
Cos 3 + i Sin 3 = (Cos + i Sin )3
= (C + iS)3
= C3 + 3C2i S + 3C i2S2 + i3S3
= C3 + 3C2 iS – 3CS2 – iS3
19 Cos 3 + i Sin 3 = (C3 – 3CS2) + i (3C2 S – S3)
Equating real and imaginary parts on both sides we get
Cos 3 = C3 – 3CS2
= Cos3 - 3 Cos Sin2
= Cos3 - 3 Cos (1-Cos2)
= Cos3 - 3 Cos + 3 Cos3
= 4 Cos3 - 3 Cos
4. Express tan 4 in terms of tan
Sin 4q tan 4 = Cos 4q
Sin 4 and Cos4 can be expressed in terms of Sin and Cos . Using
DeMoivre’s theorem we have
Cos4 + iSin4 = (Cos + i Sin)4 1
= (C + iS)4 1 1
= C4 + 4C3iS+6C2(iS)2 + 4C(iS)3 + (iS)4 1 2 1
= C4 + 4C3iS + -6C2S2 – 4 i CS3 + S4 1 3 3 1
Cos4 + i Sin4 = (C4 – 6C2S2 + S4) + i (4C3S – 4CS3) 1 4 6 4 1
Equating real and imaginary parts we get
Cos 4 = C4 – 6C2S2 + S4
= Cos4 - 6 Cos2 Sin2 + Sin4
20 Sin 4 = 4Cos3 Sin - 4Cos Sin3
Sin 4q tan 4 = Cos 4q
4Cos3q Sin q- 4Cos q Sin 3 q tan 4 = Cos4q- 6Cos 2 q Sin 2 q+ Sin 4 q
Dividing every term by Cos4, we get
Sinq Sin3 q 4- 4 Cosq Cos3 q Tan 4 = Sin2q Sin 4 q 1- 6 + Cos2q Cos 4 q
4 tanq- 4 tan3 q = 1- 6 tan2 q+ tan 4 q
QUIZ
1. The modulus of Z = 3-4i is ______
a) 3 b) -3 c) 5 d) 7
2. The argument of the complex number -1 + i 3 is ______
2p 2p 2p 2p a) b) c) d) 3 3 3 3
3. The value of eip is ______
a) 2 b) -2 c) -3 d) -1
6 4. If ( 3+ i) = x + iy then the values of x and y are ______,
______respectively.
a) x = -64, y = 0 b) x = -60, y = 1
c) x = -64, y =3 d) x = 64, y = -5
21 z= r cos a + isin a and Z= s Cos b+ iSin b Z1 5. If 1 ( ) 2 ( ) then the Z2 is ______
s s a) 轾Cos(a -b) + iSin( a -b) c) 轾Cos(a +b) + iSin( a +b) r 臌 r 臌
r s b) 轾Cos(a -b) + iSin( a -b) d) 轾Cos(a -b) + iSin( a -b) s 臌 r 臌
1+ C + iS 6. Given C2+ S 2 = 1, then the value of is ______1+ C - iS
a) Cosq+ iSin q b) Cosq+ iSin q
c) Cosq+ iSin q d) Cosq+ iSin q
骣2+ i 7. The value of (1+ i)琪 is ______桫3+ i
a) 2 b) 1 c) 4 d) -1
1 3 8. If Z= + i then the polar form of Z2 is ______2 2
2p 2 p 2p 2 p a) Cos+ isin b) Cos+ isin 3 3 3 3
2p 2 p 2p 2 p c) Cos+ isin d) Cos+ isin 3 3 3 3
22 Ans:
1. 5
2p 2. 3
3. -1
4. x = -64, y = 0
r 5. 轾Cos(a -b) + iSin ( a -b) s 臌
6. Cosq+ iSin q
7. 1
2p 2 p 8. Cos+ isin 3 3
FAQ
1. Expand (1+ i)10 in the form of a+ib.
2. Convert the complex number 1+ 3 i to polar form.
cos 2q+ i sin 2 q 3. Simplify the expression cos3q+ i sin 3 q
n 轾1+ Cos q+ iSin q 4. Prove that =Cosn q + iSinn q 臌犏1+ Cos q - iSin q
Ans:
1. 32i
p p 2. 2(cos+ i sin ) 3 3
23 3. cosq- i sin q
4. 4cos3 q- 3cos q
Assignment
1. Find the cube roots of 1+i
2. Express Sin 3 in terms of Sin
3. Prove that Cos 4 = 8 Cos4 - 8 Cos2 + 1
4. Express Sin 5 in terms of Sin
5. Express tan 3 in terms of tan
6. Show that Cos 6 = Cos6 - 3 Cos4 + 3 Cos2 - 1
Glossary
1. The modulus - argument form of a complex number z is expressed
as z = r (Cos + iSin), where r is the modulus and is the argument.
2. The modulus of the product of two complex numbers is the
product of their moulii.
3. The argument of the product of two complex numbers is the sum of
their arguments.
4. De Moivre’s theorem states that
n (Cosq+ iSin q) = Cosn q+ iSinn q where n is rational number
positive or negative.
24 5. The cube root of unity are 1,-1 + i3 , - 1 - i 3 2 2 2 2
6. eiq = Cos q + iSin q is known as Euler’s formula
Reference Books
Engineering Mathematics by K.A. Stroud, 6th edn.
Text book of De Moivre’s Theorem by A. K. Sharma DPH Mathematics Series.
Summary
De Moivre’s theorem is one of the important theorems in mathematics. This theorem connects complex numbers and trigonometry. One can use the generalized formula
n (Cosq+ iSin q) = Cosn q+ iSinn q to find explicit expressions for the nth roots of unity. It can be used to obtain relationships between trigonometric functions of multiple angles and powers of trigonometric functions.
25