<p> UNIT I</p><p>DE MOIVRE’S THEOREM AND ITS APPLICATIONS</p><p>DE MOIVRE'S THEOREM AND ITS APPLICATIONS</p><p>Learning objectives: </p><p>1. To understand the origin of DeMoivre’s theorem </p><p>2. To study the definition and proof of DeMoivre’s theorem</p><p>3. Employ DeMoivre’s theorem in a number of applications such as:</p><p> Raising a complex number to a power.</p><p> Finding roots of complex numbers. </p><p>1 Positioning the roots of a complex number on an Argand diagram.</p><p> Finding the nth roots of a complex number.</p><p> Representing a complex number in exponential form. </p><p> Expressing Cosn, Sinn and tann in terms of Cos, Sin and tan.</p><p>Introduction</p><p>In this module we introduce De Moivre’s theorem and some of its applications. De Moivre is a famous French Mathematician from the</p><p>1700's. He was a friend of Isaac Newton and was famous for his work with complex numbers, trigonometry and the theory of probability.</p><p>De Moivre's theorem links complex numbers and trigonometry.</p><p>Let z1 and z2 be two complex numbers. Then they can be represented as </p><p> z1= r 1( Cos q 1 + i Sin q 1 )</p><p> z2= r 2( Cos q 2 + i Sin q 2 )</p><p>Where z1= r 1 , z 2 = r 2 , arg( z 1) =q 1 . arg(z 2 ) =q 2</p><p>2 Now z1 z 2= r 1 r 2( Cos q 1 + i Sin q 1)( Cos q 2 + iSin q 2 )</p><p> r r轾 Cosq Cos q + i2 Sin q Sin q + iCos q Sin q + iSin q Cos q = 1 2臌 1 2 1 2 1 2 1 2</p><p>= r1 r 2臌轾 Cosq 1 Cos q 2 - Sin q 1 q 2 + i( Cos q 1 Sin q 2 + iSin q 1 Cos q 2 )</p><p> z1 z 2= r 1 r 2臌轾 Cos( q 1 + q 2) + iSin ( q 1 + q 2 ) </p><p>\z1 z 2 = r 1 r 2 , arg( z 1 z 2) =( q 1 + q 2 )</p><p>Inference</p><p>\z1 z 2 = z 1 z 2 , arg( z 1 z 2) = arg( z 1) + arg( z 2 ) ie.,</p><p>(1) The modulus of the product of two complex numbers is the product of</p><p> their moduli.</p><p>(2) The argument of the product of two complex numbers is the sum</p><p> of their arguments.</p><p>Using these facts we can find the square of a complex number (in polar form).</p><p>Let z= r( Cos q+ iSin q) where z = r and arg(z) =q</p><p>Then z2= r 2 ( Cos q+ iSin q)2</p><p>2 2 2 2 = r臌轾 Cosq+ i Sin q+ 2iSin q Cos q</p><p>3 2 2 2 = r臌轾 Cosq- Sin q+ i2Sin q Cos q </p><p>= r2 [ Cos 2q+ iSin 2 q]</p><p>It is clear that z2= r 2 and arg( z 2 ) = 2 q</p><p>This concept can be used to find any positive integer power of z.</p><p>De Moivre's Theorem</p><p>Let n be any rational number, positive or negative, then</p><p>(Cos +i Sin )n = Cos n + i Sin n </p><p>Proof</p><p>Case(i) when n is a positive integer. We prove the theorem by mathematical induction. i.e. we wish to show that</p><p>(Cos + iSin )n = Cos n + i Sin n </p><p>When n = 1 we have</p><p>(Cos + i Sin )1 = Cos 1 + i Sin 1 = Cos + i Sin</p><p>Which is true, so the theorem is true for n=1</p><p>Now assume that the theorem is true for n=k, where k is a non-negative integer. Then we have.</p><p>(Cos + i Sin )k = Cos k + iSin k</p><p>4 Multiplying both sides by (Cos + i Sin ) we get</p><p>(Cos + i Sin )k+1 = (Cos k + i Sink) (Cos + i Sin)</p><p>= (Cos (k) Cos - Sin (k) Sin ) + i (Sin(k) Cos + Cos (k) Sin</p><p>= Cos (k + ) + i Sin (k + )</p><p>= Cos (k+1) + i Sin (k+1) </p><p>So, if the theorem is true for n=k, it is true for n=k+1. Hence by the principle of mathematical induction the theorem is true for all n.</p><p>Case (ii) When n is a negative integer</p><p>Let n = -m and m > 0</p><p>Now (Cosq+ iSin q)n =( Cos q+ iSin q)- m</p><p>1 = m (Cosq+ iSin q)</p><p>1 = (Cos mq+ iSin m q)</p><p>Cos mq- iSin m q = (Cos mq+ iSin m q)( Cos m q- iSin m q)</p><p>Cos mq- iSin m q = Cos2 mq- i 2 Sin 2 m q</p><p>5 Cos(mq ) - iSin m q = Cos2 mq+ Sin 2 m q</p><p>= Cos( mq) - iSin (m q )</p><p>= Cos(- m q) + iSin( - m q)</p><p>= Cos nq+ iSin n q</p><p>Case (iii) When ' n ' is a fraction</p><p> p Let n = where p is any positive integer and q any non zero integer. q</p><p>From case (1) we have (Cosq+ iSin q)p =( Cos p q+ iSin p q)</p><p> p p = Cos qq+ iSin q q q q</p><p> q 骣 p p = 琪Cosq+ iSin q 桫 q q</p><p>Now taking qth root of both sides, (Cos +Sin ) p/q has one of its value </p><p> p p = Cosq + iSin q q q</p><p> p n Now writing =n we get( Cos q+ iSin q) = Cos n q+ iSin n q q</p><p>Hence the theorem.</p><p>6 Application of De Moivre's Theorem</p><p>De Moivre’s theorem is an important result in the field of complex numbers and it has practical applications.</p><p>1. To find the positive powers of a complex number.</p><p>Example: Find z10 if z = 1-i</p><p>Let 1-i = r (Cos + i Sin )</p><p>Equating real and imaginary parts we get</p><p> r Cos = 1 r Sin = -1</p><p> r2(Cos2 + Sin2) = 1+1</p><p> r2 = 2</p><p> r = 2 </p><p>Now</p><p> rSin q = -1 tan = -1 r Cos q</p><p>-p = 4</p><p> z= 2</p><p>7 -p arg (z) = 4</p><p>� 骣p- 骣 p \1 - i = 2犏 Cos琪 + iSin 琪 臌 桫4 桫 4</p><p>Applying De Moivre's theorem we get</p><p>10 10 � 骣p- 骣 p (1- i) =( 2) 犏 Cos 10琪 + iSin10 琪 臌 桫4 桫 4</p><p>5 � 骣p5 - 骣 p 5 = 2犏 Cos琪+ iSin 琪 臌 桫2 桫 2</p><p>� 骣p5 - 骣 p 5 = 32犏 Cos琪+ 2 p + iSin 琪 + 2 p 臌 桫2 桫 2</p><p>� 骣p- 骣 p = 32犏 Cos琪+ iSin 琪 臌 桫2 桫 2</p><p>閜 骣-p = 32犏 Cos- iSin 琪 臌 2桫 2</p><p>= 32( 0+ i( - 1))</p><p>(l-i)10 = -32i</p><p>2. To find the nth roots of a complex number</p><p>Let z= r( Cos q+ iSin q)</p><p>8 = then z1/n= r 1/n [ Cos q+ iSin q]1/n</p><p>1/ n 靟 轾+2k p 轾 q + 2k p = r睚 Cos犏+ iSin 犏 where k is an integer. 铪 臌n 臌 n</p><p>Since Sine and Cosine functions are Cyclic and repeat with every 2.</p><p>To get the n different roots of z, one only needs to consider values of k from 0 to n-1.</p><p>Example: Find the three cube roots of unity.</p><p>1 = 1 + i 0</p><p>1 = 1 (Cos 0 + i Sin 0)</p><p>3 3 � 骣0p 2 + k 骣 0 p 2 k 1= 1犏 Cos琪 + iSin 琪 臌 桫3 桫 3</p><p> k = 0, 1, 2</p><p>= Cos 0 +i Sin 0 when k=0,</p><p>2p 2 p Cos+ iSin when k = 1, 3 3</p><p>4p 4 p and Cos+ iSin when k = 2 3 3</p><p>-1 3 - 1 3 = 1, +i , - i 2 2 2 2</p><p>Example</p><p>9 Find all complex roots of 27i</p><p>27 i = 0 + 27i</p><p>27i= 02 + 27 2 = 27</p><p> p rSin = 27 arg (27i) = 2 27 Sin = 27 骣 p p Sin =1 27i = 27琪Cos+ iSin 桫 2 2 Hence = /2</p><p>Let z = r (Cos + i Sin ) So that z3 = 27i</p><p>By De Moivre’s theorem</p><p> r3 (Cos 3 + i Sin 3 ) = 27i </p><p>= 27 (Cos /2 + i Sin/2)</p><p> r3 = 27 r = 3</p><p>Cos 3 = Cos /2, Sin 3 = Sin /2</p><p>3 = /2</p><p>Hence 3 = /2 + 2k</p><p>Case(i) when k =0</p><p>3 = /2</p><p>10 = /6</p><p>z1 = 3(Cos /6 + i Sin /6)</p><p>3 3 3 = 3 (3/2+i ½ ) = + i 2 2</p><p>Care (ii) When k = 1</p><p> p 3q= + 2 p x1 2 5p 3q= 2 骣 5p p \z2 = 3琪 Cos + iSin 桫 6 6</p><p>骣- 3 1 = 3琪 +i 桫2 2</p><p>-3 3 3 z= + i 2 2 2</p><p>Case (iii) When k = 2</p><p> p 3q= + 2 p x 2 2</p><p> p = +4 p 2</p><p>9p 3q= 2</p><p>骣 3p 3 p \z3 = 3琪 Cos + iSin 桫 2 2</p><p>11 = 3 (0+i(-1)</p><p> z3 = -3i</p><p> The complex cube roots of 27i are</p><p>3 3 3 z= + i 1 2 2</p><p>-3 3 3 z= + i 2 2 2</p><p> z3 = -3i</p><p>Example 2:</p><p>Find all complex fourth roots of -16</p><p>-16 = -16 + i0</p><p>= r( Cosq+ iSin q)</p><p> r Cos = -16 r Sin = 0</p><p> r2( Cos 2q+ Sin 2 q) = 256</p><p> r2 = 256 r = 16</p><p>Now 16 Cos = -16</p><p>-16 Cos = 16</p><p>12 Cos = -1</p><p> = Cos-1(-1) = </p><p> -16 = 16 (Cos + i Sin )</p><p>Fourth roots of 16 have modulus</p><p>4 16= 2 and the possible arguments are</p><p> p p +2 p 3 p p + 4 p 5 p p + 6 p 7 p ,= , = , = 4 4 4 4 4 4 4</p><p>Hence fourth roots of -16 are:</p><p>閜 骣 p z1 = 2犏 Cos琪 + iSin 臌 桫4 4</p><p>= 2+ 2 i</p><p>轾 3p 3 p z2 = 2 Cos + iSin 臌犏 4 4</p><p>= - 2+ 2 i</p><p>轾 5p p z3 = 2 Cos + iSin 臌犏 4 4</p><p>= - 2- 2 i</p><p>轾 7p 7 p z4 = 2 Cos + iSin 臌犏 4 4</p><p>13 = 2- 2 i</p><p>3. To prove trigonometric identities</p><p>Certain trigonometric identities can be derived using DeMoivre's theorem. We can express Cos n, Sin n and Tan n in terms of Cos , Sin and Tan .</p><p>Example</p><p>1. Prove that Cos 5 = Cos5 - 10 Cos3 Sin2 + 5 Cos Sin4</p><p>2. Prove that Sin 5 = 16 Sin5 - 20Sin3 + 5Sin</p><p> tanq- 10 tan3 q+ tan 5 q 3. Prove that tan 5 = 1- 10 tan2 q+ 5tan 4 q</p><p>Solution:</p><p>1) Let C = Cos and S = Sin </p><p>Cos 5 = Real part of (Cos + iSin )5</p><p>= Re (C + iS)5</p><p>5 4 3 2 2 3 4 5 = Re (C + 5C1C (iS) + 5C2 C (iS) + 5C3 C (iS) + 5C4 (iS) + (iS)</p><p>= Re (C5 + 5C4 iS + 10 C3i2S2 + 10 C2i3S3 + 5Ci4S4 + i5S5)</p><p>= Re (C5 + 5C4Si+10C3(-1) S2 + 10C2(-i) S3 + 5C(1) S4 + iS5)</p><p>Cos 5 = Re(C+5C4Si-10C3S2-10C2S3i + 5CS4 + iS5)</p><p>14 = C5 – 10C3S2 + 5CS4</p><p>= Cos5 - 10 Cos3 Sin2 + 5Cos Sin 4</p><p>It is to be noted that, the right hand side can be expressed </p><p> entirely in terms of Cos by substituting Sin2 = 1- Cos2 and Sin4 = </p><p>(1 - Cos2)2</p><p> Cos 5 = Cos5 - 10 Cos3 (1-Cos2) + 5 Cos (1-Cos2)2</p><p>= Cos5 - 10Cos3 + 10 Cos5 + 5 Cos(1-2 Cos2 + Cos4)</p><p>= Cos5 - 10 Cos3 + 10Cos5 + 5 Cos - 10Cos3 + 5Cos5 </p><p>Cos 5 = 16 Cos5 - 20 Cos3 + 5 Cos</p><p>2. Sin 5 = Imaginary part of (Cos 5 + i Sin 5)</p><p>= Im (Cos + i Sin)5</p><p>= Im (C + is)5</p><p>= Im (C5 + 5C4 Si – 10C3S2 – 10C2 S3i + 5CS4 + is5)</p><p>= 5C4 S-10C2S3 + S5</p><p> Sin 5 = 5 Cos4 Sin - 10 Cos2Sin3 + Sin5 </p><p>If required, the right hand side can be expressed entirely in terms of</p><p>Sin by substituting Cos2 = 1-Sin2, and Cos4 = (1-Sin2)2</p><p>15 Sin 5 = 5 (1-Sin2)2 Sin-10 (1-Sin2) Sin3 + Sin5 </p><p>= 5(1-2Sin2 + Sin4) Sin - 10(1-Sin2) Sin3 + Sin5</p><p>= 5 Sin-10Sin3+5Sin5-10Sin3+10 Sin5+Sin5</p><p>= 16 Sin5 - 20Sin3 + 5Sin</p><p>Sin 5q 5Cos4 q Sin q- 10Cos 2 q Sin 3 q+ Sin 5 Q tan 5 = = Cos5q Cos5q- 10Cos 3 q Sin 2 q+ 5Cos q Sin 4 q</p><p>Dividing every term on Numerator and denominator by Cos5 we get</p><p> tanq- 10 tan3 q+ Tan 5 q Tan 5q= 1- 10 tan2 q+ 5tan 4 q</p><p>3. Exponential form of a complex number.</p><p>If is measured in radians both Cos and Sin can be expressed as an infinite series in powers of as follows:</p><p> q2 q 4 q 6( - 1) n- 1 q 2n - 2 Cosq= 1 - + - + ... + + ... .and 2! 4! 6! (2n- 2)!</p><p> q3 q 5 q 7( - 1) n- 1 q 2n - 1 Sinq=q- + - + .... + + .... 3! 5! 7! (2n- 1)!</p><p>The exponential series is given by</p><p> x x2 x 3 x n- 1 ex = 1 + + + + . ... + + .. ... 1! 2! 3! (n- 1)!</p><p>16 If we replace x by i, we get</p><p>(iq)2( i q) 3( i q) n- 1 eiq = 1 + i q+ + + ... + + ... 2! 3! (n- 1)!</p><p> q2i q 3 q 4 q 5 = 1+ i q- - + + i + ...... 2! 3! 4! 5!</p><p>骣q2 q 4 骣 q 3 q 5 = =琪1 - + - ... + i 琪 q - + .... 桫2! 4! 桫 3! 5!</p><p> eiq = Cos q+ iSin q , it is known as Euler’s formula</p><p>It is to be noted that if z = Cos+iSin then zn = (Cos + i Sin)n</p><p>= Cosn + i Sin n </p><p>= eni</p><p> and if z = r (Cos + i Sin) then</p><p> z = rei and zn = rneni</p><p>The form rei is known as the exponential form of a complex number and is linked to polar form very clearly.</p><p>Another result that can be derived from the exponential form of complex number is the following.</p><p> eiq = Cos q+ iSin q (1)</p><p>17 e-i q = Cos( -q) + iSin ( -q)</p><p> e-i q = Cos q- iSin q (2)</p><p>(1) + (2) </p><p> ei + e-i = 2Cos </p><p> eiq+ 2 - 1 q \Cos q= 2</p><p>(1) - (2) </p><p> ei - e-i = 2 i Sin </p><p>Additional Problems:</p><p>3 (1) 骣 p Simplify 琪Cosp / 6 + iSin 桫 6</p><p>3 骣 p p3 p 3 p 琪Cos+ iSin = Cos + iSin 桫 6 6 6 6</p><p> p p = Cos+ iSin 2 2</p><p>= 0 + i</p><p>= i</p><p>(2) Find the powers of (3+ i)3</p><p>3+ i = r( Cos q+ iSin q)</p><p> r Cosq= 3 rSin q= 1</p><p>18 2 r2( Cos 2q+ Sin 2 q) =( 3) + 1 2</p><p>= 3 + 1</p><p> r2 = 4</p><p>\r = 4 = 2</p><p> rSin q 1 = r Cosq 3</p><p>1-1 骣 1 tanq= \q= tan 琪 3桫 3</p><p>= 30o</p><p> p q= 6</p><p>3 3 閜骣 p \( 3 + i) =犏 2琪 Cos + iSin 臌桫 6 6</p><p>3 轾 3p 3 p = 2 Cos+ iSin 臌犏 6 6</p><p>骣 p p = 8琪 Cos+ iSin 桫 2 2</p><p>= 8(0 + i)</p><p>= 8i</p><p>(3) Show that Cos 3 = 4 Cos3 - 3 Cos </p><p>Cos 3 + i Sin 3 = (Cos + i Sin )3</p><p>= (C + iS)3</p><p>= C3 + 3C2i S + 3C i2S2 + i3S3</p><p>= C3 + 3C2 iS – 3CS2 – iS3</p><p>19 Cos 3 + i Sin 3 = (C3 – 3CS2) + i (3C2 S – S3)</p><p>Equating real and imaginary parts on both sides we get</p><p>Cos 3 = C3 – 3CS2</p><p>= Cos3 - 3 Cos Sin2</p><p>= Cos3 - 3 Cos (1-Cos2)</p><p>= Cos3 - 3 Cos + 3 Cos3</p><p>= 4 Cos3 - 3 Cos</p><p>4. Express tan 4 in terms of tan </p><p>Sin 4q tan 4 = Cos 4q</p><p>Sin 4 and Cos4 can be expressed in terms of Sin and Cos . Using</p><p>DeMoivre’s theorem we have</p><p>Cos4 + iSin4 = (Cos + i Sin)4 1</p><p>= (C + iS)4 1 1</p><p>= C4 + 4C3iS+6C2(iS)2 + 4C(iS)3 + (iS)4 1 2 1</p><p>= C4 + 4C3iS + -6C2S2 – 4 i CS3 + S4 1 3 3 1</p><p>Cos4 + i Sin4 = (C4 – 6C2S2 + S4) + i (4C3S – 4CS3) 1 4 6 4 1</p><p>Equating real and imaginary parts we get </p><p>Cos 4 = C4 – 6C2S2 + S4</p><p>= Cos4 - 6 Cos2 Sin2 + Sin4</p><p>20 Sin 4 = 4Cos3 Sin - 4Cos Sin3</p><p>Sin 4q tan 4 = Cos 4q</p><p>4Cos3q Sin q- 4Cos q Sin 3 q tan 4 = Cos4q- 6Cos 2 q Sin 2 q+ Sin 4 q</p><p>Dividing every term by Cos4, we get </p><p>Sinq Sin3 q 4- 4 Cosq Cos3 q Tan 4 = Sin2q Sin 4 q 1- 6 + Cos2q Cos 4 q</p><p>4 tanq- 4 tan3 q = 1- 6 tan2 q+ tan 4 q</p><p>QUIZ</p><p>1. The modulus of Z = 3-4i is ______</p><p> a) 3 b) -3 c) 5 d) 7</p><p>2. The argument of the complex number -1 + i 3 is ______</p><p>2p 2p 2p 2p a) b) c) d) 3 3 3 3</p><p>3. The value of eip is ______</p><p> a) 2 b) -2 c) -3 d) -1</p><p>6 4. If ( 3+ i) = x + iy then the values of x and y are ______,</p><p>______respectively.</p><p> a) x = -64, y = 0 b) x = -60, y = 1</p><p> c) x = -64, y =3 d) x = 64, y = -5</p><p>21 z= r cos a + isin a and Z= s Cos b+ iSin b Z1 5. If 1 ( ) 2 ( ) then the Z2 is ______</p><p> s s a) 轾Cos(a -b) + iSin( a -b) c) 轾Cos(a +b) + iSin( a +b) r 臌 r 臌</p><p> r s b) 轾Cos(a -b) + iSin( a -b) d) 轾Cos(a -b) + iSin( a -b) s 臌 r 臌</p><p>1+ C + iS 6. Given C2+ S 2 = 1, then the value of is ______1+ C - iS</p><p> a) Cosq+ iSin q b) Cosq+ iSin q</p><p> c) Cosq+ iSin q d) Cosq+ iSin q</p><p>骣2+ i 7. The value of (1+ i)琪 is ______桫3+ i</p><p> a) 2 b) 1 c) 4 d) -1</p><p>1 3 8. If Z= + i then the polar form of Z2 is ______2 2</p><p>2p 2 p 2p 2 p a) Cos+ isin b) Cos+ isin 3 3 3 3</p><p>2p 2 p 2p 2 p c) Cos+ isin d) Cos+ isin 3 3 3 3</p><p>22 Ans:</p><p>1. 5</p><p>2p 2. 3</p><p>3. -1</p><p>4. x = -64, y = 0</p><p> r 5. 轾Cos(a -b) + iSin ( a -b) s 臌</p><p>6. Cosq+ iSin q</p><p>7. 1</p><p>2p 2 p 8. Cos+ isin 3 3</p><p>FAQ</p><p>1. Expand (1+ i)10 in the form of a+ib.</p><p>2. Convert the complex number 1+ 3 i to polar form.</p><p> cos 2q+ i sin 2 q 3. Simplify the expression cos3q+ i sin 3 q</p><p> n 轾1+ Cos q+ iSin q 4. Prove that =Cosn q + iSinn q 臌犏1+ Cos q - iSin q</p><p>Ans: </p><p>1. 32i</p><p> p p 2. 2(cos+ i sin ) 3 3</p><p>23 3. cosq- i sin q</p><p>4. 4cos3 q- 3cos q</p><p>Assignment</p><p>1. Find the cube roots of 1+i</p><p>2. Express Sin 3 in terms of Sin </p><p>3. Prove that Cos 4 = 8 Cos4 - 8 Cos2 + 1</p><p>4. Express Sin 5 in terms of Sin</p><p>5. Express tan 3 in terms of tan </p><p>6. Show that Cos 6 = Cos6 - 3 Cos4 + 3 Cos2 - 1 </p><p>Glossary </p><p>1. The modulus - argument form of a complex number z is expressed</p><p> as z = r (Cos + iSin), where r is the modulus and is the argument.</p><p>2. The modulus of the product of two complex numbers is the</p><p> product of their moulii.</p><p>3. The argument of the product of two complex numbers is the sum of</p><p> their arguments.</p><p>4. De Moivre’s theorem states that</p><p> n (Cosq+ iSin q) = Cosn q+ iSinn q where n is rational number</p><p> positive or negative.</p><p>24 5. The cube root of unity are 1,-1 + i3 , - 1 - i 3 2 2 2 2</p><p>6. eiq = Cos q + iSin q is known as Euler’s formula</p><p>Reference Books </p><p>Engineering Mathematics by K.A. Stroud, 6th edn.</p><p>Text book of De Moivre’s Theorem by A. K. Sharma DPH Mathematics Series.</p><p>Summary</p><p>De Moivre’s theorem is one of the important theorems in mathematics. This theorem connects complex numbers and trigonometry. One can use the generalized formula</p><p> n (Cosq+ iSin q) = Cosn q+ iSinn q to find explicit expressions for the nth roots of unity. It can be used to obtain relationships between trigonometric functions of multiple angles and powers of trigonometric functions.</p><p>25</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages25 Page
-
File Size-