bioRxiv preprint doi: https://doi.org/10.1101/781898; this version posted May 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: A synthetic likelihood solution to the silent synapse estimation problem Authors: Michael Lynna, Kevin F.H. Leea, Cary Soaresa, Richard Nauda,e & Jean-Claude Béïquea,b,c,d Affiliations: a Department of Cellular and Molecular Medicine, bCanadian Partnership for Stroke Recovery, c Centre for Neural Dynamics, d Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada K1H 8M5 eDepartment of Physics, STEM Complex, room 336, 150 Louis Pasteur Pvt., University of Ottawa, K1N 6N5, Ottawa, Canada. Corresponding author: Jean-Claude Béïque University of Ottawa 451 Smyth Road, RGN 3501N Ottawa, Ontario, Canada K1H 8M5 Tel: 1-613-562-5800 ext. 4968
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/781898; this version posted May 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary Functional features of populations of synapses are typically inferred from random electrophysiological sampling of small subsets of synapses. Are these samples unbiased? Here, we developed a biophysically constrained statistical framework for addressing this question and applied it to assess the performance of a widely used method based on a failure-rate analysis to quantify the occurrence of silent (AMPAR- lacking) synapses in neural networks.