Stomach Contents of By-Caught Striped Dolphins (Stenella Coeruleoalba) in the Eastern Mediterranean Sea Ayhan Dede1,2, Alp Salman3 and Arda M

Total Page:16

File Type:pdf, Size:1020Kb

Stomach Contents of By-Caught Striped Dolphins (Stenella Coeruleoalba) in the Eastern Mediterranean Sea Ayhan Dede1,2, Alp Salman3 and Arda M Journal of the Marine Biological Association of the United Kingdom, 2016, 96(4), 869–875. # Marine Biological Association of the United Kingdom, 2015 doi:10.1017/S0025315415001538 Stomach contents of by-caught striped dolphins (Stenella coeruleoalba) in the eastern Mediterranean Sea ayhan dede1,2, alp salman3 and arda m. tonay1,2 1Faculty of Fisheries, Istanbul University, Ordu Cad. No: 200 Laleli, Istanbul, Turkey, 2Turkish Marine Research Foundation (TUDAV), P.O. Box: 10 Beykoz, Istanbul, Turkey, 3Faculty of Fisheries, Ege University, Bornova, Izmir, Turkey Stomach contents of six striped dolphins taken as by-catch in the swordfish fishery in the eastern Mediterranean Sea off the Turkish coast were examined. In total, 29 taxa were identified to species or family and 1777 individual food items (1394 bony fishes, 289 cephalopods, 94 crustaceans) were counted. Diaphus spp. and Ceratoscopelus maderensis were the most remark- able ones, as they accounted for 70.45% of the total number of fishes. Onychoteuthis banksii, on the other hand, was the only cephalopod species found in all stomach content analyses and represented 38.06% of the total number of cephalopods. Bony fish species: Myctophum punctatum, Notoscopelus elongatus, Electrona risso, Sudis hyalina, Moridae sp., Phycidae sp., Sternoptychidae sp. and cephalopods: Pterygioteuthis giardi and Chtenopteryx sicula were reported the first time in the stomach contents of striped dolphin in the Mediterranean Sea. Keywords: Cetacea, striped dolphin, Stenella coeruleoalba, stomach content, eastern Mediterranean Submitted 11 July 2015; accepted 23 August 2015; first published online 28 September 2015 INTRODUCTION in various fishing gears, such as driftnets in the Aegean and the Mediterranean Sea. There have been several incidents of The striped dolphin (Stenella coeruleoalba) is widely distribu- striped dolphin by-catches in the swordfish driftnet fishery ted in temperate to tropical seas worldwide and is the most in the Turkish waters before (O¨ ztu¨rk et al., 2001; Akyol common cetacean species in the Mediterranean, found in off- et al., 2005; Dede, 2008) until this particular fishery method shore water from Gibraltar to the Levant Basin and the was banned in 2006. Aegean Sea (Jefferson et al., 1993; Notarbartolo di Sciara & The aim of this study is to better understand feeding pre- Birkun, 2010). There are also some stranding and live sight- ferences of striped dolphins with more samples in the ings records in the Marmara Sea (O¨ ztu¨rk et al., 1999; Altug˘ Turkish coastal waters of the eastern Mediterranean Sea. et al., 2011). The Mediterranean subpopulation is classified by IUCN as vulnerable (Aguilar & Gaspari, 2012). The species is typically oceanic, inhabiting deep waters beyond MATERIALS AND METHODS the continental shelf (Notarbartolo di Sciara et al., 1993; Forcada et al., 1994; Gannier, 2005), where it feeds primarily The samples were collected in the Turkish coast of the eastern on mesopelagic fish and cephalopods, and crustaceans to a Mediterranean Sea (Dede, 2008), between Fethiye and Kalkan lesser extent (Wu¨rtz & Marrale, 1993). In addition, they are (Figure 1), in June 2003 and 2004. Six striped dolphins acci- recorded in shallow waters and feeding on demersal or dentally entangled in the swordfish driftnets were examined coastal fish species (Frantzis et al., 2003; Spitz et al., 2006; (Table 1). The distance from the coast was 7–9 nautical Santos et al., 2008). But typically, prey organisms are small- miles. The four animals from sampling area 2 were caught sized, pelagic, schooling and vertically migrating species by the same driftnet. All the animals were measured and the (Ringelstein et al., 2006; Meissner et al., 2012). stomachs were sampled and stored in a freezer at 2208C. The diet of the striped dolphin is well documented in the Samples were thawed in the laboratory, the contents western and central Mediterranean Sea (Pulcini et al., 1992; removed, washed and sieved in a 200 mm mesh size sieve Bello, 1993;Wu¨rtz & Marrale, 1993; Blanco et al., 1995; and stored in 70% ethanol. Prey remains consisted principally Alessandri et al., 2001; Meissner et al., 2012). But there is a scar- of beaks of cephalopods (lower beaks were used for species city of knowledge in the eastern basin, where the only existing identification), otoliths and dentaries of bony fish (e.g. study is that of O¨ ztu¨rket al. (2007), who examined cephalopod Supplementary Figure S1 – Dentaries of Sudis hyalina) and remains in the stomachs of three by-caught striped dolphins. crustaceans, which were identified using reference materials Although cetaceans have been under legal protection in and published guides (Clarke, 1962, 1986; Mangold & Turkey since 1983, they still face the threat of being by-caught Fioroni, 1966; Schmidt, 1968; Wolff, 1984; Kocatas¸ et al., 1991; Lu & Ickeringill, 2002; Campana, 2004; Tuset et al., Corresponding author: 2008; Agiadi et al., 2010). It was assumed that the number A. Dede of prey fish was equal to half the number of the otoliths. For Email: [email protected] the beaks of cephalopods, lower rostral length (LRL) was 869 Downloaded from https://www.cambridge.org/core. University of Athens, on 28 Sep 2021 at 01:49:53, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0025315415001538 870 ayhan dede et al. Table 2. Food items found in six striped dolphin stomachs from the eastern Mediterranean Sea. Species Numbers Occurrence N%O% Osteichthyes Gadidae 9 0.51 5 83.3 Gonostomatidae 28 1.58 3 50.0 Moridae 1 0.06 1 16.7 Myctophidae 49 2.76 6 100 Diaphus spp. 690 38.83 6 100 Notoscopelus spp. 1 0.06 1 16.7 Notoscopelus elongatus 2 0.11 1 16.7 Ceratoscopelus maderensis 292 16.43 4 66.7 Myctophum punctatum 48 2.70 5 83.3 Electrona risso 20 1.13 4 66.7 Lampanyctus crocodilus 97 5.46 3 50.0 Stomiidae Chauliodus sloani 145 8.16 6 100 Fig. 1. Sampling areas in the eastern Mediterranean Sea. Numbers indicate the Paralepididae specimens listed in Table 1. Sudis hyalina 8 0.45 3 50.0 Phycidae 3 0.17 1 16.7 Sternoptychidae 1 0.06 1 16.7 Table 1. Details of the by-caught striped dolphins. Group totals (bony fishes) 1394 Cephalopoda No Sampling Date Depth Sex Length ∗ Ancistrocheiridae area no (m) (cm) Ancistrocheirus lesueurii 3 0.17 2 33.3 F1 1 29 June 2003 2000 Male 198 Brachioteuthidae F2 2 30 June 2003 2500 Female 166 Brachioteuthis riisei 16 0.90 2 33.3 F3 2 30 June 2003 2500 Male 198 Chiroteuthidae F4 2 30 June 2003 2500 Male 198 Chiroteuthis veranii 10 0.56 5 83.3 F5 2 30 June 2003 2500 Male 200 Chtenopterygidae F6 3 21 June 2004 1000 Male 124 Chtenopteryx sicula 7 0.39 3 50.0 Enoploteuthidae ∗ Number indicated in Figure 1. Abralia veranyi 56 3.15 4 66.7 Histioteuthidae Histioteuthis bonnellii 20 1.13 4 66.7 measured and estimated mantle length (ML) was calculated as Octopoteuthidae defined by Wolff (1984), Clarke (1986), Lu & Ickeringill Octopoteuthis sicula 5 0.28 3 50.0 (2002) and O¨ ztu¨rk et al. (2007). Onychoteuthidae Onychoteuthis banksii 110 6.19 6 100 Ancistroteuthis lichtensteini 5 0.28 1 16.7 Pyroteuthidae RESULTS Pyroteuthis margaritifera 12 0.68 3 50.0 Pterygioteuthis giardi 7 0.39 2 33.3 The occurrence of cephalopods, crustaceans and fish found in Sepiolidae six striped dolphin stomachs are presented in Table 2. In total, Heteroteuthis dispar 38 2.14 5 83.3 29 taxa were identified to species or family level and 1777 indi- Group totals (cephalopods) 289 vidual food items were counted. Crustacea Decapoda 53 2.98 1 16.7 Caridea 41 2.31 5 83.3 Bony fish Group totals (crustaceans) 94 Totals 1777 100 A total of 1394 bony fish belonging to eight families and nine species were identified in six stomachs. The major family was N, total number of each prey in the stomachs; O, number of stomachs in Myctophidae (lantern fish), representing 86.01% of the total which the prey species was found. number of fishes and 67.48% of the total number of all organ- isms. Diaphus spp. and Ceratoscopelus maderensis were the most predominant fishes, comprising 70.45% of the total Although a great majority of its stomach contents included number of fishes (Figure 2A), and 55.26% of total preys luminous deep-sea fish (Myctophidae, Gonostomatidae etc.) (Table 2). But only Diaphus spp. and Chauliodus sloani in the eastern Mediterranean (98.5%), epipelagic species were found in all stomachs, representing 59.90% of the total were not found in the stomach contents (Table 2). number of the fishes (Figure 2A), and 46.99% of the total prey (Table 2). Myctophum punctatum, Notoscopelus elongatus, Cephalopods Electrona risso, Sudis hyalina, Moridae sp., Phycidae sp. and Sternoptychidae sp. were reported for the first time in the In six stomachs 289 cephalopod lower beaks were present. stomach contents of striped dolphins in the Mediterranean Sea. Twelve species belonging to 10 families were identified. The Downloaded from https://www.cambridge.org/core. University of Athens, on 28 Sep 2021 at 01:49:53, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0025315415001538 stomach contents of striped dolphins 871 Fig. 2. Proportions of species found in the stomachs: (A) bony fishes; (B) cephalopods. species found in the stomach were pelagic and mesopelagic understand the feeding ecology of striped dolphins in the luminous cephalopods. As the only cephalopod species study area, although by-caught dolphins in the same location spotted in all stomach content analyses, Onychoteuthis may not be good enough representatives of the eastern banksii represented 38.06% of the total number of cephalo- Mediterranean population.
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Feeding Ecology of Demersal Elasmobranchs from the Shelf and Slope Off the Balearic Sea (Western Mediterranean)
    Scientia Marina 75(4) December 2011, 633-639, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2011.75n4633 Feeding ecology of demersal elasmobranchs from the shelf and slope off the Balearic Sea (western Mediterranean) MARIA VALLS, ANTONI QUETGLAS, FRANCESC ORDINES and JOAN MORANTA Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma, Spain. E-mail: [email protected] SUMMARY: The feeding ecology of eight demersal elasmobranchs, three sharks (Etmopterus spinax, Scyliorhinus canicula and Galeus melastomus) and five batoids (Myliobatis aquila, Leucoraja naevus, Raja polystigma, R. miraletus and R. clavata), from the Balearic Sea (western Mediterranean) was analyzed. For each species, the diet and feeding habits were characterized by depth strata using quantitative indices such as diet overlap, diet breadth and prey diversity. Diet variation with size and depth were also tested for the most abundant species. For shelf-living species, natantian and reptantian crustaceans together with teleosts were the most important preys. On slope bottoms, euphausiids were the preferential prey for S. canicula and G. melastomus, while E. spinax fed mainly on cephalopods. The most specialist and generalist diet corresponded to G. melastomus living on the upper slope and S. canicula from the continental shelf, respectively. High overlap was found between all the skates on the continental shelf and the sympatric sharks S. canicula and G. melastomus on the slope. Significant overlap was also found between S. canicula and R. clavata on the continental shelf. Size was found to significantly affect the diet of S. canicula, G. melastomus and R.
    [Show full text]
  • 7. Index of Scientific and Vernacular Names
    Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54
    [Show full text]
  • Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1
    Pacific Science (1995), vol. 49, no. 2: 143-155 © 1995 by University of Hawai'i Press. All rights reserved Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1 RICHARD EDWARD YOUNG 2 ABSTRACT: Pelagic cephalopods of the mesopelagic-boundary region in Hawai'i have proven difficult to sample but seem to occupy a variety ofhabitats within this zone. Abralia trigonura Berry inhabits the zone only as adults; A. astrosticta Berry may inhabit the inner boundary zone, and Pterygioteuthis giardi Fischer appears to be a facultative inhabitant. Three other mesopelagic species, Liocranchia reinhardti (Steenstrup), Chiroteuthis imperator Chun, and Iridoteuthis iris (Berry), are probable inhabitants; the latter two are suspected to be nonvertical migrants. The mesopelagic-boundary region also contains a variety of other pelagic cephalopods. Some are transients, common species of the mesopelagic zone in offshore waters such as Abraliopsis spp., neritic species such as Euprymna scolopes Berry, and oceanic epipelagic species such as Tremoctopus violaceus Chiaie and Argonauta argo Linnaeus. Others are appar­ ently permanent but either epipelagic (Onychoteuthis sp. C) or demersal (No­ totodarus hawaiiensis [Berry] and Haliphron atlanticus Steenstrup). Submersible observations show that Nototodarus hawaiiensis commonly "sits" on the bot­ tom and Haliphron atlanticus broods its young in the manner of some pelagic octopods. THE CONCEPT OF the mesopelagic-boundary over bottom depths of the same range. The region (m-b region) was first introduced by designation of an inner zone is based on Reid et al. (1991), although a general asso­ Reid'sfinding mesopelagic fishes resident there ciation of various mesopelagic animals with during both the day and night; mesopelagic land masses has been known for some time.
    [Show full text]
  • Distribution and Behaviour of Deep-Sea Benthopelagic Fauna Observed Using Towed Cameras in the Santa Maria Di Leuca Cold-Water Coral Province
    Vol. 443: 95–110, 2011 MARINE ECOLOGY PROGRESS SERIES Published December 20 doi: 10.3354/meps09432 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Distribution and behaviour of deep-sea benthopelagic fauna observed using towed cameras in the Santa Maria di Leuca cold-water coral province G. D’Onghia1, A. Indennidate1, A. Giove1, A. Savini2, F. Capezzuto1, L. Sion1, A. Vertino2, P. Maiorano1 1Department of Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy 2Department of Geological Science and Geotechnology, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy ABSTRACT: Using a towed camera system, a total of 422 individuals belonging to 62 taxa (includ- ing 33 identified species) were counted in the Santa Maria di Leuca (SML) coral province (Mediterranean Sea). Our findings update the knowledge of the biodiversity of this area and of the depth records of several species. The presence of coral mounds mostly in the north-eastern sector of the SML coral province seems to influence the large scale distribution of the deep-sea ben- thopelagic fauna, playing the role of attraction-refuge with respect to the barren muddy bottoms where fishing occurs in northern areas. Multiple Correspondence Analysis identified 3 main taxa groups: (1) rather strictly linked to the bottom, resting or moving on the seabed, often sheltering and feeding; (2) mostly swimming in the water column and mostly observed on rugged bottoms; and (3) actively swimming or hovering near the seabed. The behavioural patterns largely related to activity and position of the fauna seem to determine their small-scale distribution. The effects of different benthic macrohabitats appear to be less important and the depth within the bathymetric range examined even less so.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Sub-Regional Report On
    EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2.
    [Show full text]
  • A Short Note on the Cephalopods Sampled in the Angola Basin During the DIVA-1 Expedition Uwe Piatkowskiã, Rabea Diekmann
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 227–230 www.elsevier.de/ode RESULTS OF THE DIVA-1 EXPEDITION OF RV ‘‘METEOR’’ (CRUISE M48/1) A short note on the cephalopods sampled in the Angola Basin during the DIVA-1 expedition Uwe PiatkowskiÃ, Rabea Diekmann IFM-GEOMAR, Leibniz-Institut fu¨r Meereswissenschaften an der Universita¨t Kiel, Du¨sternbrooker Weg 20, D-24105 Kiel, Germany Abstract Five cephalopods, all belonging to different species, were identified from deep-sea trawl samples conducted during the DIVA 1-expedition of RV ‘‘Meteor’’ in the Angola Basin in July 2000. These were the teuthoid squids Bathyteuthis abyssicola, Brachioteuthis riisei, Mastigoteuthis atlantica, Galiteuthis armata, and the finned deep-sea octopus Grimpoteuthis wuelkeri. The present study contributes information on size, morphometry, biology and distribution of the species form this unique cephalopod collection. r 2004 Elsevier GmbH. All rights reserved. Keywords: Cephalopoda; Deep-sea; Angola Basin; Cirrate octopods Introduction captured. These circumstances demonstrate the great scientific value of any cephalopod sampled from deep- Cephalopods in the bathyal and abyssal ecosystems sea habitats. The abyssal plains still belong to the most have been the subject of only a limited number of studies unknown regions in the oceans. One of these plains, the due to the obvious difficulties involved in collecting Angola Basin was sampled during the RV ‘‘Meteor’’ them adequately at such great depths (Voss 1967; expedition in 2000. In the present study, we provide Villanueva 1992). A further drawback relates to their information on a small collection of cephalopods which delicate bodies, which are frequently damaged almost have been caught during the expedition and which beyond recognition in trawl samples.
    [Show full text]
  • Cephalopod Species Captured by Deep-Water Exploratory Trawling in the Eastern Ionian Sea By
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N4526 NAFO SCR Doc. 01/131 SCIENTIFIC COUNCIL MEETING – SEPTEMBER 2001 (Deep-sea Fisheries Symposium – Poster) Cephalopod Species Captured by Deep-water Exploratory Trawling in the Eastern Ionian Sea by E. Lefkaditou1, P. Maiorano2 and Ch. Mytilineou1 1National Centre for Marine Research, Aghios Kosmas, Helliniko, 16604 Athens, Greece. E-mail: [email protected] 2Department of Zoology, University of Bari, via E.Orabona 4, 70125 Bari, Italy. E-mail: [email protected] Abstract The intensive exploitation of the continental shelf has lead to a search of new fisheries resources in deeper waters. Four seasonal experimental surveys were carried out on the deep-waters of the Eastern Ionian Sea by Greek and Italian commercial trawlers from September 1999 to September 2000.Potential targets included deepwater species of fishes, shrimps and cephalopods. During the 4 cruises, a total of 26 species of cephalopods in 10 families were recorded, including 10 oegopsid squids, 3 myopsid squids, 5 octopods, 2 cuttlefishes and 6 sepiolids. Deep-water trawling resulted in the finding of some uncommon species such as Ancistroteuthis lichtensteini, Ctenopteryx sicula and Galiteuthis armata, which were recorded for the first time in the study area. Extensions of depth range were recorded for several species. The results of multivariate analyses, based on Bray-Curtis similarity indices, showed the presence of two clear associations: one consisting of hauls carried out at depths 300-550 m, where Sepietta oweniana, Todaropsis eblanae and Loligo forbesi are the most abundant species, and another with deeper hauls (up to 770 m depth) dominated by Neorossia caroli, Pteroctopus tetracirrhus and Todarodes sagittatus.
    [Show full text]
  • Synthesis of Information on Some Demersal Crustaceans Relevant for Fisheries in the South Central Mediterranean Sea
    3232 MEDSUDMED - TECHNICAL DOCUMENTS Synthesis of information on some demersal Crustaceans relevant for fisheries in the South central Mediterranean Sea SYNTHESIS OF INFORMATION ON SOME DEMERSAL CRUSTACEANS RELEVANT FOR FISHERIES IN THE SOUTH-CENTRAL MEDITERRANEAN SEA FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome 2013 The conclusions and recommendations given in this and in other documents in the Assessment and Monitoring of the Fishery Resources and the Ecosystems in the Straits of Sicily Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained in subsequent stages of the Project. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]