Electronic Supplementary Material s37

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Supplementary Material s37

Electronic Supplementary Material

A Fluorescent Sandwich Assay for Thrombin Using Aptamer Modified Magnetic Beads and Quantum Dots

Xiaofang Wang,1,2 Qiang Zhao1*

1. Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan, China, 030006 2. College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China, 030006

* Corresponding author Email: [email protected] Tel: +86-351-7018525; Fax: +86-351-7011011

1 Table S1. Performance comparison of various aptamer-based sandwich assays on solid surface for thrombin with respect to applied aptamers, solid support, reporter, limit of detection (LOD), linear dynamic range (LDR), and complex sample tested Methods Aptamers Solid supports Reporters LOD LDR Complex Ref.

sample

Electrochemistry Apt15 electrode HRP 80 nM NA NA 1

Absorbance Apt15 and Apt29 magnetic beads HRP 10 nM 10 nM-80 nM NA 2

2+ ECL Apt15 and Apt29 GNPs on electrode Ru(bpy)3 10 nM 56 nM-900 nM NA 3

Electrochemistry Apt15 and Apt29 electrode GDH 10 nM 40 nM-100 nM NA 4

Fluorescence Apt15 and Apt29 glass slide europium complex 7.7 nM 10 nM-70 nM serum 5

ECL Apt15 and Apt29 electrode QD 2.7 nM 27 nM-545 nM NA 6

Absorbance Apt15 and Apt29 glass slide GNPs 2 nM 2 nM-167 nM NA 7

Fluorescence Apt15 and Apt29; silica nanoparticle fluorescein 1.1 nM 1.1 nM -40 nM serum 8

Apt15

Electrochemistry Apt15 and Apt29 magnetic beads ALP 0.45 nM 1 nM-100 nM serum; 9

plasma

Magnetorotation Apt15 and Apt29 microsphere magnetic beads 0.3 nM 1 nM- 20 nM NA 10

Fluorescence Apt15 and Apt29 magnetic beads QD 0.27 nM 2.7 nM-27 nM NA 11

Electrochemistry Apt15 and Apt29 electrode QD 0.14 nM 0.28 nM-7 nM NA 12

Fluorescence Apt15 and Apt29 microtiter plates liposome encapsulated 64 pM 72 pM-500 nM plasma 13

dyes

Electrochemistry Apt15 and Apt29 magnetic bead Ferrocenyl hexanethiol 0.06 nM 0.1 nM-5 nM NA 14

loaded silica

nanocapsules

Fluorescence Apt15 and Apt29 magnetic beads QD 0.05 nM 0.05 nM-0.5 nM serum this work

SPR Apt15 gold substrate magnetic nanoparticles 0.02 nM 0.27 nM-27 nM NA 15

ICP MS Apt15 and Apt29 magnetic beads GNPs 10 pM 0.05 nM-10 nM serum 16

Electrochemistry Apt15 electrode QD 1 pM 1 pM-1 nM serum 17

Electrochemistry Apt15 and Apt29 magnetic GNPs 1.4 pM 5.6 pM-1.12nM plasma 18

nanoarticles

Electrochemistry Apt15 electrode Pt Co Nanochain 0.39 pM 1 pM-30 nM NA 19

EIS Apt15 electrode GNPs 100 fM 0.05 nM-35 nM serum 20

Electrochemistry Apt15 and Apt29 magnetic HRP-labeled GNPs 30 fM 0.1 pM-60 pM NA 21

nanoparticles

Electrochmesity Apt15 and Apt29 magnetic beads primer DNA for PCR 5.4 fM 0.3 pM-3 nM NA 22

ECL Apt15 and Apt29 electrode SWNT carrying ECL 3 fM 10 fM-10 pM serum 23

tags

Electrochemistry Apt15 electrode QD 0.55 fM 1 fM-20 fM serum 24

Electrochemistry Apt15 and Apt29 magnetic GNPs 8 aM 75 aM-1.5 fM plasma 25

nanoparticles

ECL, Electrochemiluminescence; ICP MS, Inductively coupled plasma mass spectrometry; EIS, Electrochemical impedance spectroscopy; HRP, horseradish peroxidase; GDH, gluocose

2 dehydrogenase; ALP, alkaline phsphatase; GNPs, gold nanoparticles; SWNT, single wall carbon nanotube; NA, not available

References 1. Mir M, Vreeke M, Katakis L, (2006) Different strategies to develop an electrochemicalthrombin aptasensor. Electrochem Commun. 8:505 2. Shen R, Tang JJ, Zhang ZY, Guo L, Xie JW, (2009) New magnetic beads-based enzymelinked aptamer colorimetric assay for trace amount protein detection. Chem. J. Chin. Uni. 30: 701 3. Fang L, Lu Z, Wei H, Wang E, (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal. Chim. Acta, 628:80 4. Ikebukuro K, Kiyohara C, Sode K, (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens. Bioelectron. 20:2168. 5. Huang DW, Niu CG, Qin PZ, Ruan M, Zeng GM (2010) Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection. Talanta 83:185 6. Huang H, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25:927 7. Pavlov V, Xiao Y, Shlyahovsky B, Willner I, (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc 126:11768 8. Wang Y, Liu B, (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787 9. Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466 10. Hecht A, Kumar AA, Kopelman R, (2011) Label-acquired magnetorotation as a

3 signal transduction method for protein detection aptamer-based detection of thrombin. Anal. Chem. 83:7123. 11. Tennico YH, Hutanu D, Koesdjojo MT, Bartel CM, Remcho VT (2010) On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem 82:5591 12. Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes. Anal Chem 80:707 13. Edwards KA, Wang Y, Baeumner AJ, (2010) Aptamer sandwich assays: human α- thrombin detection using liposome enhancement. Anal. Bioanal. Chem. 398:2645 14 Wang Y, He X, Wang K, Ni X, Su J, Chen Z, (2011) Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosens. Bioelectron. 26:3536

15. Wang J, Zhu Z, Munir A, Zhou HS, (2011) Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay.Talanta 84: 78316. 16. Zhao Q, Li X-F, Le XC, (2008) Aptamer linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma mass spectrometry detection. Anal. Chem. 80:3915 17. Yang H, Ji J, Liu Y, Kong J, Liu B (2009) An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun 11:38 18. Zheng J, Lin L, Cheng GF, Wang A, Tan X, He P, Fang Y, (2007) Study on an electrochemical biosensor for thrombin recognition based on aptamers and nano particles. Sci. China Ser. B Chem. 50: 351 19. Bai L, Yuan R, Chai Y, Yuan Y, Zhuo Y, Mao L, (2011) Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosens. Bioelectron. 26:4331 20. Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S, (2009) Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal. Chem. 81:739

4 21. Zhao J, Zhang Y, Li H, Wen Y, Fan X, Lin F, Tan L, Yao S (2011) Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer- AuNPs-HRP conjugates. Biosens Bioelectron 26:2297 22. Xiang Y, Xie M, Bash R, Chen JJ, Wang J, (2007) Ultrasensitive label-free aptamer-based electronic detection. Angew. Chem. Int. Ed. 46:9054 23. Li Y, Qi H, Gao Q, Yang J, Zhang C, (2010) Nanomaterial-amplified "signal off/on" electrogenerated chemiluminescence aptasensors for the detection of thrombin. Biosens Bioelectron 26:754 24. Ding C, Ge Y, Lin JM, (2010) Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens Bioelectron 25:1290 25. Zheng J, Feng W, Lin L, Zhang F, Cheng G, He P, Fang Y, (2007) A new amplification strategy for ultrasensitive electrochemical aptasensor with network- like thiocyanuric acid/gold nanoparticles. Biosens. Bioelectron. 23:341

5

Recommended publications