Activation of Diboron Reagents: the Development of Mild Conditions for the Synthesis of Unique Organoboron Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Activation of Diboron Reagents: the Development of Mild Conditions for the Synthesis of Unique Organoboron Compounds Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds Steven Brandon Thorpe Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry Webster L. Santos, Chairman Paul R. Carlier David G. I. Kingston James M. Tanko March 23, 2012 Blacksburg, Virginia Keywords: borylation, diboron reagent, boronic ester, conjugate addition, copper catalysis © 2012 by Steven B. Thorpe Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds Steven Brandon Thorpe ABSTRACT The first successful synthesis and isolation of a boronic acid was reported in 1860 by Frankland in the pursuit of novel organometallic compounds. For more than a century, further studies of boronic acids were sparsely published. Suzuki and Miyaura jumpstarted the field in 1979 with an innovative carbon-carbon bond forming reaction employing an organoboronic acid and a carbon halide under palladium catalysis. Indeed, the Nobel Prize in Chemistry was awarded to Professor Akira Suzuki, along with Professors Richard Heck and Ei-ichi Negishi, in 2010 for their important contributions in palladium-catalyzed cross-coupling chemistry. Over the last 30 years, reports on organoboron compounds have increased exponentially. This dissertation describes the author’s contributions to the development of preparative methods for organoboronic acid derivatives using transition metal-catalyzed reactions of diboron reagents. A unique “mixed” diboron reagent was developed (PDIPA diboron) that contains sp2- and sp3-hybridized boron atoms, unambiguously confirmed by X-ray crystallography. PDIPA diboron is sufficiently activated internally through a dative-bonding amine to selectively transfer the sp2-hybridized boron regioselectively, in the presence of copper, to electron deficient alkenes including α,β-unsaturated ketones, esters, amides, aldehydes, and nitriles to provide the corresponding boratohomoenolates. A unique β,β-diboration of an α,β-acetylenic ketone was also discovered. The scope of PDIPA diboron reactions was then expanded to a set of substrates with a more complex structural backbone. Allenoates are α,β,γ-unsaturated esters with orthogonal pi systems, which pose several possible difficulties with the regioselectivity of addition, not to mention known isomerizations catalyzed by copper. However, we successfully installed the boron moiety regioselectively on the β-carbon of a variety of allenoates, providing a vinyl boronic ester, and also observed exclusive formation of the (Z)-isomer from racemic starting materials. The resulting vinyl boronic ester was then shown to be an excellent Suzuki-Miyaura cross-coupling partner, affording a diastereopure, trisubstituted alkene in quantitative yield. Commercially available bis(pinacolato)diboron has shown remarkable stability towards hydrolysis and autoxidation. Using this reagent, we developed a copper- and amine-catalyzed boration protocol performed entirely in water and open to air. Using only 1 mol% copper, extraordinary activity was observed. UV-Vis, 11B NMR, and solvent kinetic isotope experiments were employed to gain insight into the mechanism, which showed the possibility of autocatalysis. Attempts to control stereoselectivity were not successful, although these results were rationalized by a dynamic catalyst structure. iii Acknowledgements First and foremost, I would like to express my sincere gratitude to my advisor, Professor Webster L. Santos. He has taken a true personal interest in my development into a successful Ph.D. Chemist. Behind the relentless phrase, “so where’s my compound?” is a man who has always provided an inspiring environment for me to cultivate a stand-alone method of solving tough chemical problems, while also challenging me to develop and mature into a better person overall. He taught me how to set seemingly unachievable goals for myself and then how to manage my time, resources, and priorities to accomplish them. It is almost impossible to put into words what I have gained the past 5 years, but I know that I could not have achieved any of this without Dr. Santos by my side as both my leader, and my friend. I would also like to thank my advisory committee; Dr. Paul Carlier, Dr. David Kingston, and Dr. Jim Tanko. You have all made exceptional efforts to ensure that my fundamental techniques are flawless and that my learning is unhindered; teaching me how to understand, embrace and even implement alternative approaches to answering chemical problems. I am very grateful for your patience while I struggled through learning concepts that I am sure seemed elementary to you. Additionally, I would like to thank Dr. Paul Deck for always being eager to advise me on anything I needed. Somehow, he has the answer to every question. To my friends and colleagues, I would like to say thank you for the vital role you have played in my graduate career. From my first days here, when I was subjected to the rigorous training program of my mentor, Ken Knott, not a day has passed that I have not learned something new. I owe this primarily to the senior members of the Santos group; Ken Knott, Mithun Raje, David Bryson, Jason Crumpton, Mike Perfetti, Dr. Phileppe Bissel and Dr. Ming Gao, who have somehow simultaneously served as my role models, scientific advisors and iv friends. I would also like to recognize two individuals whom I had the pleasure of mentoring and befriending; Xi Guo and Joe Calderone. Finally, I would like to thank all of my friends and family outside of the lab. You have all been vital in maintaining my sanity throughout grad school by supporting me and encouraging my success. To my parents, Steve and Debbie Thorpe, and grandparents, Chuck and Georgianne Kennedy, I would never have made it this far without you. To my brother, Justin Thorpe and uncle, David Kennedy, you have both been dynamic in my development and some of my fondest memories are with you. To my roommates over the years, thank you for distracting me from work at every opportunity and being the best friends I could ask for. Lastly, I would like to thank Cathy Minichino, who has been my unwavering support through the toughest of times. I look forward to many happy years with you. I love you all. v Dedication To my parents and grandparents. You have been the most influential people in my life, and I love you. vi Table of contents List of schemes ......................................................................................................................x List of figures ..................................................................................................................... xii List of tables ...................................................................................................................... xiii Chapter 1 Boronic acids and their derivatives ...............................................1 1.1 Structure and properties of boronic acids and their derivatives ..................................1 1.2 Pharmaceutical applications of organoboron compounds ...........................................3 1.3 Synthetic intermediates – transforming the C-B bond ................................................6 1.4 Preparation of organoboron compounds ...................................................................16 1.5 Dissertation overview ................................................................................................21 1.6 References for Chapter 1 ...........................................................................................22 Chapter 2 Structure and reactivity of a preactivated sp2-sp3 diboron reagent: catalytic regioselective boration of α,β-unsaturated conjugated compounds ................................................................ 32 2.1 Contributions .............................................................................................................32 2.2 Abstract ......................................................................................................................33 2.3 Introduction ...............................................................................................................34 2.4 Design and synthesis of a novel “mixed” diboron reagent ........................................38 2.5 Reactivity of PDIPA diboron towards copper-catalyzed β-boration .........................39 2.6 Further development – introduction ..........................................................................43 2.7 Synthesis and characterization of (R,R)-PDIPA diboron ..........................................43 2.8 Re-optimization: additives .........................................................................................47 2.9 Re-optimization: stoichiometry and other reaction conditions .................................51 2.10 Full scope of ketones and aldehydes .........................................................................52 vii 2.11 Proposed catalytic cycle ............................................................................................55 2.12 Conclusions ...............................................................................................................56 2.13 References for Chapter 2 ...........................................................................................57 Chapter 3 Regio- and stereoselective copper-catalyzed β-borylation of allenoates by a
Recommended publications
  • 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G
    j1 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G. Hall 1.1 Introduction and Historical Background Structurally, boronic acids are trivalent boron-containing organic compounds that possess one carbon-based substituent (i.e., a CÀB bond) and two hydroxyl groups to fill the remaining valences on the boron atom (Figure 1.1). With only six valence electrons and a consequent deficiency of two electrons, the sp2-hybridized boron atom possesses a vacant p-orbital. This low-energy orbital is orthogonal to the three substituents, which are oriented in a trigonal planar geometry. Unlike carbox- ylic acids, their carbon analogues, boronic acids, are not found in nature. These abiotic compounds are derived synthetically from primary sources of boron such as boric acid, which is made by the acidification of borax with carbon dioxide. Borate esters, one of the key precursors of boronic acid derivatives, are made by simple dehydration of boric acid with alcohols. The first preparation and isolation of a boronic acid was reported by Frankland in 1860 [1]. By treating diethylzinc with triethylborate, the highly air-sensitive triethylborane was obtained, and its slow oxidation in ambient air eventually provided ethylboronic acid. Boronic acids are the products of a twofold oxidation of boranes. Their stability to atmospheric oxidation is considerably superior to that of borinic acids, which result from the first oxidation of boranes. The product of a third oxidation of boranes, boric acid, is a very stable and relatively benign compound to humans (Section 1.2.2.3). Their unique properties and reactivity as mild organic Lewis acids, coupled with their stability and ease of handling, are what make boronic acids a particularly attractive class of synthetic intermediates.
    [Show full text]
  • Shungube Mbongeni M 2016.Pdf
    Hydroboration Studies of Olefins with Heterocyclic Hydroborating Reagents with Various Transition Metal Complexes: Attemped Diastereoselective Synthesis of Homoallylic Alcohols via Hydroboration. Thesis submitted in fulfilment of the requirements for the degree Master of Science By Mbongeni M. Shungube School of Chemistry and Physics College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg December 2016 Declaration The experimental work described in this dissertation was carried out in the School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, under the supervision of Professor Ross S. Robinson. I hereby declare that these studies represent original work by the author and have not otherwise been submitted in any form for any degree or diploma to any tertiary institution. Where the use of published information from other authors has been made and it is duly acknowledged in the text. Signed …………………………………………… Mbongeni M. Shungube (Candidate) I hereby certify that this statement is correct. Signed …………………………………. Professor Ross S. Robinson (Supervisor) i Abstract Hydroboration is one of the key routes to afford organoborane esters which are versatile intermediate in organic synthesis. Investigations of different hydroborating reagents and catalysts toward hydroboration present alternative to achieve organoborane ester with different stability, selectivity, and yield. Hence, a part of this study was focused on the preparation of heterocyclic hydroborating reagents with a single site available for hydroboration. Four reagents were prepared which included the well-known catecholborane (23) and pinacolborane (24) and the hardly studied 2,3-dihydro-1,3,2-benzodiazaborole (31) and 2,3-dihydro-1,3,2-benzoxazaborole (34). A study to utilize hydroboration to prepare allylic boronic esters using the four hydroborating reagent above was also undertaken.
    [Show full text]
  • Boronic Acids
    Boronic Acids Boronic Acids www.alfa.com INCLUDING: • Boronic Esters • Oxazaborolidine Reagents • Coupling and Hydroboration Catalysts • Phosphine Ligands • Borylation Reagents www.alfa.com Where Science Meets Service Quality Boronic Acids from Alfa Aesar Alfa Aesar is known worldwide for a variety of chemical compounds used in research and development. Recognized for purity and quality, our products and brands are backed by technical and sales teams dedicated to providing you the best service possible. In this catalog, you will find details on our line of boronic acids, esters and related compounds, which are manufactured to the same exacting standards as our full offering of over 33,000 products. Also included in this catalog is a 28-page introduction to boronic acids, their properties and applications. This catalog contains only a selection of our wide range of chemicals and materials. Also included is a selection of novel coupling catalysts and ligands. Many more products, including high purity metals, analytical products, and labware are available in our main catalog or online at www.alfa.com. Table of Contents About Us _____________________________________________________________________________ II How to Order/General Information ____________________________________________________ III Introduction __________________________________________________________________________ 1 Alkenylboronic acids and esters _____________________________________________________ 29 Alkylboronic acids and esters ________________________________________________________
    [Show full text]
  • UC Santa Cruz Electronic Theses and Dissertations
    UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES Permalink https://escholarship.org/uc/item/113107h0 Author Clary, Jacob William Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY AND BIOCHEMISTRY by Jacob William Clary March 2012 The Dissertation of Jacob W. Clary is approved: Professor Bakthan Singaram, Advisor Professor Rebecca Braslau, Chair Professor Claude Bernasconi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Jacob W. Clary 2012 ii TABLE OF CONTENTS LIST OF FIGURES viii LIST OF SCHEMES x LIST OF TABLES xii ABSTRACT xviii DEDICATION AND ACKNOWLEDGEMENTS xv CHAPTER 1. Review of Boronic Acid Synthesis and Applications 1 1.1 Introduction 2 1.1.1 Nomenclature of Boronic Acids 3 1.1.2 Properties of Boronic Acids 5 1.1.3 Analysis of Boronic Acids 7 1.2 Boronic Acids in Organic Chemistry 9 1.2.1 Suzuki-Miyaura C-C Cross-Coupling 9 1.2.1.1 Applications of the Suzuki-Miyaura Cross-Coupling Reaction 11 1.2.1.2 Mechanism of the Suzuki-Miyaura Cross-Coupling 15 1.2.2 Stereoselective Suzuki Cross-Coupling 16 1.2.3 C-N and C-O Cross-Coupling Reactions with Boronic Acids 23 1.2.4 Biological and Medicinal Applications 26 1.3 Synthesis of Boronic Acids 31 1.3.1 Transmetallation of Grignard and Organolithium Reagent 32 iii 1.3.2 Cross-coupling Reaction of Bis(pinacolato)diboron and Pinacolborane 34 1.3.3 C-H Activation 40 1.4.
    [Show full text]
  • ( 12 ) United States Patent
    US010618878B1 (12 ) United States Patent ( 10 ) Patent No.: US 10,618,878 B1 Shaikh et al. (45 ) Date of Patent : Apr. 14 , 2020 (54 ) CATALYTIC REDUCTION OF AROMATIC in Water ; ACS Sustainable Chemistry Energy 4 ( 3 ) ; pp . 1834-1839 ; RING IN AQUEOUS MEDIUM Feb. 16 , 2016 ; Abstract Only ; 2 Pages. Biswas , et al. , A Mild Rhodium Catalyzed Direct Synthesis of ( 71) Applicant: King Fahd University of Petroleum Quinolones from Pyridones : Application in the Detection ofNitroaromat and Minerals , Dhahran (SA ) ics ; The Journal of Organic Chemistry 82 ( 20 ) ; pp . 10989-10996 ; Sep. 13 , 2017 ; Abstract Only ; 2 Pages . (72 ) Inventors: M. Nasiruzzaman Shaikh , Dhahran Laska , et al .; Rhodium Containing Magnetic Nanoparticles: Effec (SA ) ; Zain H. Yamani, Dhahran (SA ) tive Catalysts for Hydrogenation and the 1,4 - Addition of Boronic Acids ; Catalysis Letters vol. 122 , Issue 1-2 ; pp . 68-75 ; Dec. 1 , 2007 ; (73 ) Assignee : King Fahd University of Petroleum Abstract Only ; 5 Pages . and Minerals , Dhahran (SA ) Shaikh , et al.; Sub -nanometric Rh decorated magnetic nanoparticles as reusable catalysts for nitroarene reduction in water ; Catalysis ( * ) Notice : Subject to any disclaimer , the term of this Communications vol . 119 ; pp . 134-138 ; Jan. 10 , 2019 ; Abstract patent is extended or adjusted under 35 Only ; 2 Pages . U.S.C. 154 ( b ) by 0 days. Baralt, et al .; Homogeneous Catalytic Hydrogenation . 6. Synthetic and Mechanistic Aspects of the Regioselective Reductions ofModel ( 21) Appl. No .: 16 /366,586 Coal Nitrogen , Sulfur, and Oxygen Heteroaromatic Compounds Using the ( ~ 5 Pentamethylcyclopentadienyl )rhodiu?m ris( acetonitrile ) ( 22 ) Filed : Mar. 27 , 2019 Dication Complex as the Catalyst Precursor ; J.
    [Show full text]
  • Program Book.PDF
    16th Boron Chemistry Meeting in the Americas June 26 - 30, 2018 at Boston College Program and Abstracts 1 WELCOME It is our distinct pleasure to welcome you to the 16th Boron Chemistry Meeting in the Americas here at Boston College. We hope that you will enjoy the historic city of Boston as well as the four-day program filled with exciting talks and stimulating discussions. Delegates from all over the world (North-, Central-, and South America, Europe, and Asia), and from diverse backgrounds (academia, industry, and government) are coming together at this conference to learn about the latest developments in boron chemistry. Thus, we hope that this gathering will not only promote scientific exchange and collaboration but also provide an opportunity for participants to make new connections and to reconnect with old friends. In organizing the program, the vision we had was to highlight the versatility of the element boron in four specific areas (medicinal chemistry, organic synthesis, materials chemistry, fundamental chemistry). This four-pronged thematic focus is represented by our conference logo with four infinity symbols surrounding the boron and is reflected by the scientific program. One of the highlights of the program will be the poster session on Wednesday evening. This will be a great opportunity to chat about the latest research while enjoying small bites and drinks. Another highlight is the conference banquet, which will take place on Thursday evening at the exquisite State Room with unparalleled views of the city and the Boston waterfront from the 33rd floor in the heart of downtown Boston. During the banquet we will celebrate Prof.
    [Show full text]
  • Palladium-Catalyzed Synthesis and Transformation of Organoboranes
    Palladium-Catalyzed Synthesis and Transformation of Organoboranes Sara Sebelius Stockholm University Department of Organic Chemistry August 2006 © Sara Sebelius, Stockholm 2006 ISBN 91-7155-290-1 Typesetting: AB Danagårds Grafiska, Ekonomi-Print Krokodilen Printed in Sweden by AB Danagårds Grafiska, Ekonomi-Print Krokodilen, Stockholm 2006 Distributor: Stockholm University Library ii Till Helen iii iv Abstract This thesis presents the development of new palladium-catalyzed transformations involving synthesis and application of allylborane reagents. In these reactions various palladium sources, including pincer complexes and commonly used catalysts were applied. A new transformation for allylation of aldehyde and imine substrates was devised using allyl acetates, diboronate reagents and catalytic amounts of Pd2(dba)3. By employment of commercially available chiral diboronates enantioenriched homoallyl alcohols could be obtained. We have also developed a palladium-catalyzed method for synthesis of functionalized allylboronic acids from vinyl cyclopropane, vinyl aziridine, allyl acetate and allyl alcohol substrates using diboronic acid as reagent. In this process a highly selective selenium based pincer- complex was used as catalyst. The resulting allylboronic acid products were converted to potassium trifluoro(allyl)borates or allylboronates. The functionalized allylboronic acids generated in the above procedure were employed as reagents in two synthetic transformations. One of these transformations involves a palladium(0)-catalyzed coupling reaction between allylboronic acids and aryl iodides. The reaction was regioselective for the branched allylic product, typically difficult to prepare in the absence of directing groups. We also developed another transformation for allylation of aldehydes with allyl alcohols via allylboronic acid intermediate. This procedure can be performed as a simple one-pot sequence affording homoallyl alcohols with excellent stereo- and regioselectivity.
    [Show full text]
  • WO 2014/170786 Al 23 October 2014 (23.10.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/170786 Al 23 October 2014 (23.10.2014) P O P C T (51) International Patent Classification: 06419 (US). MAGUIRE, Bruce; 17 Waterhouse Lane, C07D 401/14 (2006.01) C07D 471/04 (2006.01) Chester, Connecticut 06412 (US). MCCLURE, Kim F.; C07D 413/14 (2006.01) C07D 487/04 (2006.01) 12 Willow Drive, Mystic, Connecticut 06355 (US). A61K 31/4725 (2006.01) A61P 7/00 (2006.01) PETERSEN, Donna N.; 107 Forsyth Road, Salem, Con A61K 31/519 (2006.01) necticut 06420 (US). PIOTROWSKI, David W.; 19 Beacon Hill Drive, Waterford, Connecticut 06385 (US). (21) International Application Number: PCT/IB20 14/060407 (74) Agent: OLSON, A. Dean; Pfizer Inc., Eastern Point Road MS8260-2141, Groton, CT 06340 (US). (22) International Filing Date: 3 April 2014 (03.04.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/812,864 17 April 2013 (17.04.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/880,336 20 September 2013 (20.09.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/898,667 1 November 2013 (01.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0315928A1 Darout Et Al
    US 201403 15928A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0315928A1 DarOut et al. (43) Pub. Date: Oct. 23, 2014 (54) SUBSTITUTEDAMIDE COMPOUNDS Publication Classification (71) Applicant: Pfizer Inc., New York, NY (US) (51) Int. Cl. C07D40 L/4 (2006.01) (72) Inventors: Etzer Darout, Cambridge, MA (US); A 6LX3/59 (2006.01) Robert Dullea, Groton, MA (US); Julie A6II 45/06 (2006.01) Jia Li Hawkins, Weston, CT (US); C07D 413/4 (2006.01) Allyn T. Londregan, Barrington, RI A613 L/437 (2006.01) (US); Paula M. Loria, Killingworth, CT A 6LX3L/24709 (2006.01) (US); Bruce Maguire, Chester, CT A613 L/4545 (2006.01) (US); Kim F. McClure, Mystic, CT C07D 487/04 (2006.01) (US); Donna N. Petersen, Salem, CT C07D 47L/04 (2006.01) (52) U.S. Cl. (US); David W. Piotrowski, Waterford, CPC ............ C07D401/14 (2013.01); C07D487/04 CT (US) (2013.01); A61 K3I/519 (2013.01); A61 K 45/06 (2013.01); C07D 471/04 (2013.01); (73) Assignee: Pfizer Inc., New York, NY (US) A6 IK3I/437 (2013.01); A61 K3I/4709 (2013.01); A61 K3I/4545 (2013.01); C07D 413/14 (2013.01) (21) Appl. No.: 14/253,084 USPC ........ 514/259.3:544/281: 546/117: 514/300; 546/143: 514/310:546/194; 514/318; 546/113 (22) Filed: Apr. 15, 2014 (57) ABSTRACT The present invention is directed at substituted amide com pounds, pharmaceutical compositions containing Such com Related U.S. Application Data pounds and the use of such compounds to reduce plasma lipid (60) Provisional application No.
    [Show full text]
  • 2 Metal-Catalyzed Borylation of Alkanes and Arenes Via C–H Activation for Synthesis of Boronic Esters
    2 Metal-catalyzed Borylation of Alkanes and Arenes via C–H Activation for Synthesis of Boronic Esters Tatsuo Ishiyama and Norio Miyaura 2.1 Introduction Organoboron derivatives are an important class of compounds that have been uti- lized as synthetic intermediates [1–6], functional molecules [7–9], functional poly- mers [10], 10B carriers for neutron capture therapy [11], and biologically active agents [12]. A traditional method for their synthesis is the alkylation of trialkylborates or haloboranes with organomagnesium or -lithium reagents (transmetalation) [1, 13] or addition of hydroboranes to unsaturated hydrocarbons (hydroboration) [1, 14]. Al- though these methods are now common for large-scale preparations of organoboron compounds, catalyzed reactions are an interesting strategy for obtaining chemo-, re- gio-, and stereoselectivities that differ from those achieved by uncatalyzed reactions. For example, catalyzed hydroboration of alkenes and alkynes [15] with catecholborane (HBcat, cat = O2C6H4) or pinacolborane (HBpin, pin = Me4C2O2) has provided a method for asymmetric hydroboration of alkenes with chiral phosphine-rhodium cat- alysts [16], 1,4-hydroboration of 1,3-dienes [17], trans-hydroboration of terminal alkynes giving (Z)-1-alkenylboronates [18], or diastereoselective hydroboration of cyclic and acyclic allyl alcohol derivatives [19]. A protocol that involves oxidative addi- tion of an H–B bond to a low-valent transition metal has been successfully extended to analogous metal-catalyzed addition reactions of B–B [20], B–S [21], B–Si [22] or B–Sn [23] compounds [15c]. Conversely, cross-coupling reactions of B–B [15c, 20] or B–H [24] reagents with aryl, vinyl, allyl and benzyl halides or trif lates have provided a direct method for the bory- lation of organic electrophiles without using lithium or magnesium intermediates.
    [Show full text]
  • Cationic Rhodium-Catalyzed Hydroboration: Investigations Into Electronic and Ligand Effects; Lewis-Acid Reaction Acceleration and Regioselectivity Change
    Cationic Rhodium-Catalyzed Hydroboration: Investigations into Electronic and Ligand Effects; Lewis-Acid Reaction Acceleration and Regioselectivity Change by CHRISTOPHER JAMES LATA A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada September 2009 Copyright © Christopher James Lata, 2009 Abstract Mechanistic aspects of the asymmetric rhodium catalyzed hydroboration of vinyl arenes with catecholborane (HBCat) and pinacolborane (HBPin) have been probed. Competition studies conducted with catalysts bearing asymmetric ligands Josiphos or Quinap reveal substituent effects of varying sensitivity correlating to Hammett parameter sigma. In reactions involving the Quinap ligand, rho-values of +1.97 and +1.02 are observed for HBCat and HBPin, respectively. In Josiphos-ligated systems, rho-values of +1.38 and -3.17 are observed, indicating that the reaction proceeds through differing mechanisms depending on the borane employed. Labeling experiments reveal differences in the reversibility of the hydride insertion step of reaction depending on the ligand and borane implemented in hydroboration. A new methodology has been developed for regioselective rhodium-catalyzed hydroboration of internal olefins with pinacolborane. The addition of co-catalytic Lewis acids results in the activation of cationic rhodium catalysts in chlorinated solvents. Increased catalytic activity and regioselectivity are observed under these conditions. For internal alkyl olefins, selectivity for non-isomerized secondary boronate esters was found originate from the non-coordinating solvents employed in the reaction. For aromatic olefins, increased regioselectivity and reaction acceleration are both effects of the Lewis acid additive. Study of the reaction revealed that these properties are linked to Lewis acid-base mediated heterolytic B-H bond cleavage of pinacolborane, and suggests that the reagent is transferred to the rhodium catalyst as borenium ion and hydride moieties.
    [Show full text]
  • Chemfile Vol.7 No 7
    2007 VOLUME 7 NUMBER 7 Product Directory Boron Reagents for Suzuki Coupling BORYLATION REAGENTS BORONIC ACIDS BORONATE ESTERS TRIFLUOROBORATE SALTS Potassium cyclopropyltrifluoroborate: a simple reagent for the introduction of a cyclopropyl group via Suzuki cross–coupling. sigma-aldrich.com Table of Contents Sigma-Aldrich is committed to providing the most extensive portfolio of high-quality boronic acids, boronate esters, and trifluoroborate salts for use in Suzuki coupling, and we continually expand our product listing. Within each section of this directory, products are listed by increasing molecular formula. If you are unable to find a coupling reagent for your research, “Please Bother Us” at [email protected], or contact your local Sigma-Aldrich office (see back cover). If viewing the electronic version, simply select from the category below to jump to that section or activate your Adobe® Bookmarks. You may also search by name, product number, molecular formula, or CAS registry number by using the “find” feature in Adobe® (Ctrl+F in Windows® or Command+F in a Macintosh® environment). Borylation Reagents Boronate Esters Trifluoroborate Salts Introduction Boronic Acids Alkylboronate esters Alkyltrifluoroborates Alkylboronic acids Alkenylboronate esters Alkenyltrifluoroborates Alkenylboronic acids Allenyl- and Alkynylboronate esters Aryltrifluoroborates Arylboronic acids Arylboronate esters S-Heteroaryltrifluoroborates N-Heteroarylboronic acids N-Heteroarylboronate esters O-Heteroarylboronic acids O-Heteroarylboronate esters S-Heteroarylboronic acids S-Heteroarylboronate esters Foreword Akira Suzuki Professor Emeritus, Hokkaido University Sapporo, Japan Reactions in which new carbon–carbon bonds are formed are key steps in building the complex, bioactive molecules that become developed into drugs and agrochemicals. These reactions are also vital in developing the new generation of ingeniously designed organic materials with novel electronic, optical, or mechanical properties, that are likely to play a significant role in the burgeoning area of nanotechnology.
    [Show full text]