Tailed Eagle Threaten to Exclude Other Avian Predators?

Total Page:16

File Type:pdf, Size:1020Kb

Tailed Eagle Threaten to Exclude Other Avian Predators? Coexistence of protected avian predators: does a recovering population of White- tailed Eagle threaten to exclude other avian predators? Rimgaudas Treinys, Deivis Dementavičius, Gintautas Mozgeris, Saulis Skuja, Saulius Rumbutis & Darius Stončius European Journal of Wildlife Research ISSN 1612-4642 Volume 57 Number 6 Eur J Wildl Res (2011) 57:1165-1174 DOI 10.1007/s10344-011-0529-7 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Eur J Wildl Res (2011) 57:1165–1174 DOI 10.1007/s10344-011-0529-7 ORIGINAL PAPER Coexistence of protected avian predators: does a recovering population of White-tailed Eagle threaten to exclude other avian predators? Rimgaudas Treinys & Deivis Dementavičius & Gintautas Mozgeris & Saulis Skuja & Saulius Rumbutis & Darius Stončius Received: 17 December 2009 /Revised: 11 March 2011 /Accepted: 14 March 2011 /Published online: 7 April 2011 # Springer-Verlag 2011 Abstract The processes of competition and predation high. In this study, we investigated nesting habitat overlap determine the degree to which species can coexist; the between internationally protected diurnal tree-nesting avian importance of competition in particular has been empha- predators of central Europe, namely, White-tailed Eagle sized at high trophic levels. Competition exclusion will (Haliaeetus albicilla), Lesser Spotted Eagle (Aquila occur when habitat overlap between sympatric species is pomarina), Black Stork (Ciconia nigra), and Osprey (Pandion haliaetus). We found significantly different nesting habitats among the study species and suggest that Communicated by C. Gortázar this could be a consequence of the resource-based segrega- R. Treinys (*) tion, but not a consequence of asymmetrical interspecific Nature Research Centre, competition. The results also show that habitat of the Akademijos 2, recovering populations of White-tailed Eagle overlapped 08412 Vilnius, Lithuania with the habitat used by the Lesser Spotted Eagle, Black e-mail: [email protected] Stork, and Osprey to varying extents with a niche overlap : D. Dementavičius S. Rumbutis values being below the competition exclusion threshold. The Foundation for the Development of Nature Protection Nevertheless, we suggest that competition by White-tailed Projects, Eagle at a population level may limit Osprey, though not Savanorių pr. 173, 03150 Vilnius, Lithuania Lesser Spotted Eagle or Black Stork. : D. Dementavičius S. Rumbutis Keywords Habitat . Overlap . Avian predator . Department of Ornithology, T. Ivanauskas Zoological Museum, Coexistence . Conservation Laisvės al. 106, 44253 Kaunas, Lithuania G. Mozgeris Introduction GIS Education and Research Centre, Institute of Environment, Lithuanian University of Agriculture, Studentų 13, Ecological differences among species that lead to niche 53362 Kaunas Distr., Lithuania partitioning and therefore coexistence can occur because (1) different species may specialize in distinct resources S. Skuja (classical resource partitioning); (2) different species may Department of Silviculture, Lithuanian University of Agriculture, Studentų 11, Akademija, be limited by the same resources or natural enemies, but Kaunas Distr. 533621, Lithuania differ in terms of when they exploit the resource or respond to natural enemies (temporal niche partitioning); and (3) č D. Ston ius species could differ in terms of where they experience, and Lithuanian Fund for Nature, Algirdo 22-3, respond to, limiting factors (spatial niche partitioning; Vilnius 03218, Lithuania Amarasekare 2003). The processes of competition and Author's personal copy 1166 Eur J Wildl Res (2011) 57:1165–1174 predation determine the degree to which species can coexist al. 2001; Skuja and Budrys 1999;Struwe-Juhl2000; (Martin 1988), with predation being considered to have at Šablevičius 2001; Treinys et al. 2009). least a similar or even greater effect on animal communities The White-tailed Eagle (body mass, ∼3.1–6.9 kg) is than competition (Krüger 2002b; Suhonen et al. 2007). largely a resident raptor species occupying territories most Although the role and relative importance of factors of the year (Dementavičius and Treinys 2009). Populations shaping species' interaction and communities has been the in the countries around the Baltic Sea decreased rapidly in subject of hot controversy (Krüger 2002b), competition the 1960s and 1970s, but wide-range protective measures importance has been emphasized at high trophic levels yielded positive results, and the population of the species (Hakkarainen et al. 2004). increased substantially between 1970 and 1990 (Helander Coexistence can be thought of as resulting from and Stjernberg 2003; Stjernberg et al. 2005). Following a competing species exhibiting differences along four major continued population increase across Europe during 1990– niche axes: resources, natural enemies, space, and time 2000, the European breeding population currently com- (Amarasekare 2003). In the community of sympatric prises 5,000–6,600 pairs (BirdLife International 2004). The diurnal raptors, however, differences along the resources first breeding pairs in Lithuania were found in 1987, and axis could play a most important role: food abundance latest figures suggest the breeding population to be ∼90 along with the availability of suitable nest sites has been pairs (Dementavičius 2007). White-tailed Eagles prey considered the most important resource in raptors (Newton mainly on fish and waterfowl (Cramp and Simmons 2003). Sympatric raptors usually consume different prey 1980), but is known to kill other raptors (Dementavičius (Giovanni et al. 2007; Olsen et al. 2010), but intense 2004; Helander 1983; Mikkola 1983). The Lesser Spotted competition for nest sites could occur among forest- Eagle is a migratory species with a body mass of ∼1.1– dwelling raptors (Krüger 2002a), which typically prefer 2.2 kg (Cramp and Simmons 1980). Its European popula- old growth forests at different spatial scales (Treinys and tion (14,000–19,000 pairs) is declining (BirdLife Interna- Mozgeris 2010 and references therein). Heavy stick nests of tional 2004), as is the Lithuanian population (Treinys et al. medium-size and large raptors can only be constructed in 2007), which comprises 1,931–2,869 pairs (Mischenko et large trees (Kostrzewa 1996; Lõhmus 2006), and this al. in press). It preys mainly upon small mammals, although demand greatly reduces the potential nesting habitat. certain species of amphibians are also common in its diet Timber harvesting reduces the availability of suitable (Meyburg et al. 2001). The Black Stork is a migratory nesting structures for raptors in managed forests (Lõhmus species with a body mass of ∼2.4–3.2 kg (Janssen et al. 2003). Consequently, a lack of suitable forest patches could 2004). Between 7,800 and 12,000 pairs breed in Europe increase competition for available nest sites (Hakkarainen et (BirdLife International 2004), where the recent trends are al. 2004). During the last two decades, differences between geographically distinct: range expansion and population nesting habitat of sympatric diurnal forest-dwelling raptors increases dominate in the west, while declines are reported mostly analyzed the species system of Northern Goshawk in the east (Janssen et al. 2004). The Lithuanian population Accipiter gentilis, Common Buzzard Buteo buteo,and has declined and currently comprises 650–950 pairs Honey Buzzard Pernis apivorus (Kostrzewa 1996; Gamauf (Treinys et al. 2008). It feeds on fish and amphibians (del 2001; Krüger 2002a; Hakkarainen et al. 2004), but other Hoyo et al. 1992). The Osprey is a migratory ichthyoph- species systems are covered as well (Aquila chrysaetos, agous species with a body mass of ∼1.1–2.1 kg (Cramp and Aquila heliaca, and Haliaeetus albicilla (Katzner et al. Simmons 1980). Most European populations were either 2003); Aquila clanga and Aquila pomarina (Lõhmus and stable or increasing between 1990 and 2000, and the Väli 2005); and Aegypius monachus, A. pomarina, European population is now believed to have reached Hieraaetus pennatus, and A. gentilis (Poirazidis et al. 7,600–11,000 breeding pairs (BirdLife International 2004). 2007)). In this study, we attempted to cover a new set of In Lithuania, the population has increased over the last two species and investigated habitat overlap of sympatric decades to ∼50 pairs (Šablevičius 2001). differently sized internationally protected diurnal tree- Carrete et al. (2005) suggested that when habitat overlap nesting avian predators of central Europe: White-tailed is slight, interspecific competition seems to be a secondary Eagle H. albicilla, Lesser Spotted Eagle A. pomarina, factor in the population decline of a subdominant raptor Black Stork Ciconia nigra, and Osprey Pandion haliaetus. species. The population increase of the largest species in an All these species are long lived, exhibit a high degree of avian predator community may present a special conserva- site-fidelity, have large home-ranges, avoid vicinity of tion dilemma when the dominant and the subdominant humans, prefer to
Recommended publications
  • Turkey Birding Eastern Anatolia Th Th 10 June to 20 June 2021 (11 Days)
    Turkey Birding Eastern Anatolia th th 10 June to 20 June 2021 (11 days) Caspian Snowcock by Alihan Vergiliel Turkey, a country the size of Texas, is a spectacular avian and cultural crossroads. This fascinating nation boasts an ancient history, from even before centuries of Greek Roman and Byzantine domination, through the 500-year Ottoman Empire and into the modern era. Needless to say, with such a pedigree the country holds some very impressive archaeological and cultural sites. Our tour of Eastern Turkey starts in the eastern city of Van, formerly known as Tuspa and 3,000 years ago the capital city of the Urartians. Today there are historical structures from the Seljuk and Ottoman periods, and Urartian artifacts can be seen at its archaeological museum. RBL Turkey Itinerary 2 However, it is the birds that are of primary interest to us as here, at the eastern limits of the Western Palearctic, we expect to find some very special and seldom-seen species, including Mountain ‘Caucasian’ Chiffchaff, Green Warbler, Mongolian Finch and Grey-headed Bunting. Around the shores of Lake Van we will seek out Moustached and Paddyfield Warblers in the dense reed beds, while on the lake itself, our targets include Marbled Teal, the threatened White-headed Duck, Dalmatian Pelican, Pygmy Cormorant and Armenian Gull, plus a selection of waders that may include Terek and Broad-billed Sandpiper. As we move further north-east into the steppe and semi desert areas, we will attempt to find Great Bustards and Demoiselle Cranes, with a potential supporting cast of Montagu’s Harrier, Steppe Eagle, the exquisite Citrine Wagtail and Twite, to name but a few.
    [Show full text]
  • A Multi-Gene Phylogeny of Aquiline Eagles (Aves: Accipitriformes) Reveals Extensive Paraphyly at the Genus Level
    Available online at www.sciencedirect.com MOLECULAR SCIENCE•NCE /W\/Q^DIRI DIRECT® PHYLOGENETICS AND EVOLUTION ELSEVIER Molecular Phylogenetics and Evolution 35 (2005) 147-164 www.elsevier.com/locate/ympev A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level Andreas J. Helbig'^*, Annett Kocum'^, Ingrid Seibold^, Michael J. Braun^ '^ Institute of Zoology, University of Greifswald, Vogelwarte Hiddensee, D-18565 Kloster, Germany Department of Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746, USA Received 19 March 2004; revised 21 September 2004 Available online 24 December 2004 Abstract The phylogeny of the tribe Aquilini (eagles with fully feathered tarsi) was investigated using 4.2 kb of DNA sequence of one mito- chondrial (cyt b) and three nuclear loci (RAG-1 coding region, LDH intron 3, and adenylate-kinase intron 5). Phylogenetic signal was highly congruent and complementary between mtDNA and nuclear genes. In addition to single-nucleotide variation, shared deletions in nuclear introns supported one basal and two peripheral clades within the Aquilini. Monophyly of the Aquilini relative to other birds of prey was confirmed. However, all polytypic genera within the tribe, Spizaetus, Aquila, Hieraaetus, turned out to be non-monophyletic. Old World Spizaetus and Stephanoaetus together appear to be the sister group of the rest of the Aquilini. Spiza- stur melanoleucus and Oroaetus isidori axe nested among the New World Spizaetus species and should be merged with that genus. The Old World 'Spizaetus' species should be assigned to the genus Nisaetus (Hodgson, 1836). The sister species of the two spotted eagles (Aquila clanga and Aquila pomarina) is the African Long-crested Eagle (Lophaetus occipitalis).
    [Show full text]
  • Age Estimation of Black Stork (Ciconia Nigra) Nestlings from Wing, Bill, Head, and Tarsus Lengths at the Time of Ringing
    Turkish Journal of Zoology Turk J Zool (2018) 42: 132-136 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1702-42 Age estimation of black stork (Ciconia nigra) nestlings from wing, bill, head, and tarsus lengths at the time of ringing 1 1 1 2 1, Maciej KAMIŃSKI , Bartosz JANIC , Lidia MARSZAŁ , Jerzy BAŃBURA , Piotr ZIELIŃSKI * 1 Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland 2 Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland Received: 20.02.2017 Accepted/Published Online: 11.09.2017 Final Version: 10.01.2018 Abstract: Black stork nestlings were measured (wing, bill, head, and tarsus lengths) at weekly intervals in central Poland in 2012, 2014, and 2015. The aim of the study was to provide growth equations based on nestling measurements to allow age estimation of black stork nestlings. The hatching hour and date of nestlings in five nests were determined using trail cameras. The age of the measured nestlings ranged from 18 to 53 days. Wing, bill, and head lengths showed linear growth, while tarsus growth was only linear for nestlings not exceeding 35 days old. Within the age range studied, wing length grew 9.6 mm per day, head length grew 2.3 mm per day, and bill length grew 1.8 mm per day. The study provides the first growth parameters for the black stork. Key words: Breeding ecology, growth formulas, ringing, biometrics, storks, trail cameras Compared to the white stork (Ciconia ciconia), the 2005).
    [Show full text]
  • Reproduction and Behaviour of the Long-Legged Buzzard (.Buteo Rufinus) in North-Eastern Greece
    © Deutschen Ornithologen-Gesellschaft und Partner; download www.do-g.de; www.zobodat.at Die Vogelwarte 39, 1998: 176-182 Reproduction and behaviour of the Long-legged Buzzard (.Buteo rufinus) in North-eastern Greece By Haralambos Alivizatos, Vassilis Goutner and Michael G. Karandinos Abstract: Alivizatos , H., V. Goutner & M. G. Karandinos (1998): Reproduction and behaviour of the Long- legged Buzzard ( Buteo rufinus) in North-eastern Greece. Vogelwarte 39: 176-182. The breeding biology of the Long-legged Buzzard ( Buteo rufinus) was studied in the Evros area, north-eastern Greece in 1989, 1990, 1992 and 1993. The mean number of young fledged per pair per year was similar between years with an overall average of 0.93 (1.58 per successful pair). Of ten home range variables examined, the num­ ber of alternative nest sites and the extent of forest free areas in home ranges were significant predictors of nest­ ling productivity. Aggressive interactions were observed with 18 bird species (of which 12 were raptors), most commonly with the Buzzard {Buteo buteo). Such interactions declined during the course of the season. Prey pro­ visioning to nestlings was greatest in the morning and late in the afternoon declining in the intermediate period. Key words: Buteo rufinus, reproduction, behaviour, Greece. Addresses: Zaliki 4, GR-115 24 Athens, Greece (H. A.); Department of Zoology, Aristotelian University of Thessaloniki, GR-54006, Thessaloniki, Macedonia, Greece (V. G.); Laboratory of Ecology and Environmental Sciences, Agricultural University of Athens 75 Iera Odos 1 1855 Athens, Greece (M. G. K.). 1. Introduction The Long-legged Buzzard (Buteo rufinus) is a little known raptor of Europe.
    [Show full text]
  • Effect of Environmental Elements on Migration Pattern of Eagles at Jorbeer Conservation Reserve, Bikaner, Rajasthan, India
    Kataria et al RJLBPCS 2016 www.rjlbpcs.com Life Science Informatics Publications Original Research Article DOI - 10.26479/2016.0203.08 EFFECT OF ENVIRONMENTAL ELEMENTS ON MIGRATION PATTERN OF EAGLES AT JORBEER CONSERVATION RESERVE, BIKANER, RAJASTHAN, INDIA A.K. Kataria1*, N.Kataria2 and R.N.Kumawat3 1.Principal Investigator, Centre for excellence for use of space based technology in animal science, Rajasthan University of Veterinary and Animal Sciences, Bikaner-334001, Rajasthan, India. 2.Professor & Head, Department of Veterinary Physiology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner-334001, Rajasthan, India. 3. Deputy Forest Officer (Wildlife), Bikaner, Rajasthan ABSTRACT: The present endeavor was carried out to find out the effect of environmental elements on migration pattern of eagles at Jorbeer Conservation Reserve, Bikaner, Rajasthan, India (JCRBRI) during period from April 2015 to July 2016. The eagles studied were steppe eagle (Aquila nipalensis) and greater spotted eagle (Clanga clanga). The greater spotted eagle was seen only from November to February reiterating their winter migration to this reserve. Steppe eagle stayed at reserve during various months of the study year 2015 and 2016 when the THI values varied as 56.64-79.5. Recording of count of steppe eagle and greater spotted eagle besides real-time observation of environmental temperature and humidity signified in monitoring of eagle residence in the region. Result of the endeavor assisted in comprehending the absence of eagles in summer months during study periods. Residential period of steppe eagle was from November to April and of greater spotted eagle was from November to February only.
    [Show full text]
  • Spring Migration of Soaring Birds Over the Bosphorus, Turkey, in 2006
    Spring migration of soaring birds over the Bosphorus, Turkey, in 2006 ÖzkAN ÜNER, kEREM ALi BoyLA, ERGÜN BAcAk, ERTuğRuL BiREL, İLhAN ÇELikoBA, CEM DALYAN, EVRIM TABUR & ÜMIT YARDIM The Bosphorus is one of the most important migration bottlenecks in the Middle East. However, most counts have been done during autumn and complete spring counts are very few. In spring 2006, a complete count of migrating soaring birds over the Bosphorus was carried out. We report a total of 100 051 birds, which consisted of 51 958 White Storks Ciconia ciconia, 16 185 Common Buzzards Buteo buteo, 15 232 Lesser Spotted Eagles Aquila pomarina and 9085 Honey Buzzards Pernis apivorus. The study demonstrates the importance of the Bosphorus for the spring migration of soaring birds. INTRODUCTION Turkey has major Western Palearctic migration crossroads, with corridors and bottlenecks for soaring birds in the northwestern (Bosphorus in Istanbul, Figure 1), northeastern (Borçka, Artvin province) and southern (Belen, Hatay province) parts of the country (Grimmett & Jones 1989). The Bosphorus is a well-known migration bottleneck for soaring birds due to its location at the junction between Europe and Asia. The whole population of eastern White Storks Ciconia ciconia, over 340 000 birds, flies over the Bosphorus. Zalles & Bildstein (2000) reported between 29 000 and 75 000 migrant raptors in autumn over the Bosphorus whereas a very recent multi-station but short survey has shown that more than 150 000 raptors use the area in autumn (Milvus Group 2008). Most of the world population of Lesser Spotted Eagles Aquila pomarina and Levant Sparrowhawks Accipiter brevipes, at least in autumn, crosses into Asia via the Bosphorus (Kirwan et al 2008) using the east Mediterranean route (Shirihai et al 2000).
    [Show full text]
  • Breeding and Migration of the Black Stork
    Breeding and migration of the Black Stork (Ciconia nigra), with special regard to a Central European population and the impact of hydro-meteorological factors and wetland status Doctoral (PhD) thesis Tamás Enikő Anna Supervisor: Dr. Szép Tibor University of Debrecen Doctoral Council of Natural Sciences Juhász-Nagy Pál Doctoral School Debrecen, 2012. Breeding and migration of the Black Stork (Ciconia nigra), with special regard to a Central European population and the impact of hydro-meteorological factors and wetland status Doctoral (PhD) thesis Tamás Enikő Anna Supervisor: Dr. Szép Tibor University of Debrecen Doctoral Council of Natural Sciences Juhász-Nagy Pál Doctoral School Debrecen, 2012. Ezen értekezést a Debreceni Egyetem Juhász-Nagy Pál Doktori Iskola Biodiverzitás Doktori Programjának keretében készítettem 2010-2011-ben, és ezennel benyújtom a Debreceni Egyetem természettudományi doktori (PhD) fokozatának elnyerése céljából. Debrecen, 2012. január Tamás Enikő Anna Tanúsítom, hogy Tamás Enikő Anna doktorjelölt 2010-2011-ben a fent megnevezett doktori program keretében irányításommal végezte munkáját. Az értekezésben foglalt eredményekhez a jelölt önálló alkotó tevékenységével meghatározóan hozzájárult. Az értekezés elfogadását javasolom. Debrecen, 2012. január Dr. Szép Tibor Breeding and migration of the Black Stork (Ciconia nigra), with special regard to a Central European population and the impact of hydro- meteorological factors and wetland status Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében, a TERMÉSZETVÉDELMI BIOLÓGIA tudományágban Írta: TAMÁS ENIKŐ ANNA okleveles ÉPÍTŐMÉRNÖK Készült a Debreceni Egyetem JUHÁSZ-NAGY PÁL doktori iskolája (BIODIVERZITÁS programja) keretében Témavezető: Dr. SZÉP TIBOR A doktori szigorlati bizottság elnök: Dr. BARTA ZOLTÁN tagok: Dr. ISTVÁNOVICS VERA Dr. LENGYEL SZABOLCS A doktori szigorlat időpontja: 2011.
    [Show full text]
  • Black Stork Hand-Rearing
    A New Hand Rearing Protocol for Black Storks at the Cotswold Wildlife Park By Jamie Craig and Louise Peat Introduction The Black Stork (Ciconia nigra) is a medium sized member of the Ciconiidae family. Its natural breeding range extends across the Palaearctic region, with wintering grounds in Asia and Africa. There is thought to be a resident population in SW Spain and some breeding in scattered populations in Southern Africa. Preferred habitat is undisturbed open woodland where it feeds in streams, riverbanks and grasslands Natural diet consists mainly of fish, with invertebrates, reptiles, amphibians, birds and small mammals also taken. The Black Stork is not globally threatened but its numbers are declining, particularly in Western Europe. It is listed as CITES II and is currently managed at ESB level in European collections. Previous attempts In 1987 Cotswold Wildlife Park (CWP) was the first UK collection to successfully hand rear Black Storks, in 1988 we went on to be the first UK collection to successfully parent rear this species. Whilst we have continued to have success with parent rearing we have never repeated the hand rearing success (unfortunately records of this rearing were incomplete and much of the information lost) despite several attempts in successive years all have resulted in mortality due to metabolic bone disease (MBD). With each attempt lessons have been learnt and over the years we have tweaked the rearing protocol and finally put together a well-researched procedure. Reasons for hand rearing At the end of January this year our pair of Black Storks were moved to a temporary enclosure whilst exhibit renovations took place, the depth of the aviary was increased along with the height, which is now a tented net rather than a flat roof structure, offering much needed additional height.
    [Show full text]
  • Spread-Wing Postures and Their Possible Functions in the Ciconiidae
    THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY Von. 88 Oc:roBE'a 1971 No. 4 SPREAD-WING POSTURES AND THEIR POSSIBLE FUNCTIONS IN THE CICONIIDAE M. P. KAI-IL IN two recent papers Clark (19'69) and Curry-Lindahl (1970) have reported spread-wingpostures in storks and other birds and discussed someof the functionsthat they may serve. During recent field studies (1959-69) of all 17 speciesof storks, I have had opportunitiesto observespread-wing postures. in a number of speciesand under different environmentalconditions (Table i). The contextsin which thesepostures occur shed somelight on their possible functions. TYPES OF SPREAD-WING POSTURES Varying degreesof wing spreadingare shownby at least 13 species of storksunder different conditions.In somestorks (e.g. Ciconia nigra, Euxenuragaleata, Ephippiorhynchus senegalensis, and ]abiru mycteria) I observedno spread-wingpostures and have foundno referenceto them in the literature. In the White Stork (Ciconia ciconia) I observedonly a wing-droopingposture--with the wings held a short distanceaway from the sidesand the primaries fanned downward--in migrant birds wetted by a heavy rain at NgorongoroCrater, Tanzania. Other species often openedthe wingsonly part way, in a delta-wingposture (Frontis- piece), in which the forearmsare openedbut the primariesremain folded so that their tips crossin front o.f or below the. tail. In some species (e.g. Ibis leucocephalus)this was the most commonly observedspread- wing posture. All those specieslisted in Table i, with the exception of C. ciconia,at times adopted a full-spreadposture (Figures i, 2, 3), similar to those referred to by Clark (1969) and Curry-Lindahl (1970) in severalgroups of water birds.
    [Show full text]
  • The Morphology of the Bill Apparatus in the Steller's Sea Eagle
    First Symposium on Steller’s and White-tailed Sea Eagles in East Asia pp. 1-10, 2000 UETA, M. & MCGRADY, M.J. (eds) Wild Bird Society of Japan, Tokyo Japan The morphology of the bill apparatus in the Steller’s Sea Eagle Alexander Ladyguin Moscow State University, Science Park, Educational-Research Center "Ecosoil", 119899, Moscow, Russia. e-mail: [email protected] INTRODUCTION The osteology of birds has been more thoroughly investigated than any other anatomical system in that group of animals. Being made up of many individual parts, each with numerous details, the skeleton offers more evident possibilities for study than other systems. Bones also make up most of the fossil evidence. The avian skull and mandible have featured largely in systematic accounts (e.g. Huxley 1867, Pycraft 1898, Barnikol 1952, Fisher 1944), and have attracted much attention as to function (e.g. Lakjer 1926, Hofer 1950, Bock 1970, Dzerdjinskiy 1972, 1986, Hertel 1994). Study of the avian skull rests in part on research during developmental stages, as in the adult few suture lines are retained. Some phases of development have been investigated by Parker 1890, Marinelly 1936, Jollie 1957, Sushkin 1899, 1902. Some species of Falconiformes were investigated by Parker 1873, Sushkin 1899, Fisher 1944, Jollie 1977, Hertel 1994, Ladygin 1994. No detailed investigation of the skull of sea eagles has been undertaken. MATERIAL AND METHODS Twenty-one skulls of Steller’s Sea Eagle Haliaeetus pelagicus, 12 skulls of White-tailed Sea Eagle H. albicilla and 18 skulls of Bald Eagle H. leucocephalus were examined. Five adult, 4 subadult and 3 eaglet (4 weeks old) skulls were included in the myology study.
    [Show full text]
  • Estimations Relative to Birds of Prey in Captivity in the United States of America
    ESTIMATIONS RELATIVE TO BIRDS OF PREY IN CAPTIVITY IN THE UNITED STATES OF AMERICA by Roger Thacker Department of Animal Laboratories The Ohio State University Columbus, Ohio 43210 Introduction. Counts relating to birds of prey in captivity have been accomplished in some European countries; how- ever, to the knowledge of this author no such information is available in the United States of America. The following paper consistsof data related to this subject collected during 1969-1970 from surveys carried out in many different direc- tions within this country. Methods. In an attempt to obtain as clear a picture as pos- sible, counts were divided into specific areas: Research, Zoo- logical, Falconry, and Pet Holders. It became obvious as the project advanced that in some casesthere was overlap from one area to another; an example of this being a falconer working with a bird both for falconry and research purposes. In some instances such as this, the author has used his own judgment in placing birds in specific categories; in other in- stances received information has been used for this purpose. It has also become clear during this project that a count of "pets" is very difficult to obtain. Lack of interest, non-coop- eration, or no available information from animal sales firms makes the task very difficult, as unfortunately, to obtain a clear dispersal picture it is from such sourcesthat informa- tion must be gleaned. However, data related to the importa- tion of birds' of prey as recorded by the Bureau of Sport Fisheries and Wildlife is included, and it is felt some observa- tions can be made from these figures.
    [Show full text]
  • Bird Checklists of the World Country Or Region: Myanmar
    Avibase Page 1of 30 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Myanmar 2 Number of species: 1088 3 Number of endemics: 5 4 Number of breeding endemics: 0 5 Number of introduced species: 1 6 7 8 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Myanmar. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=mm [23/09/2021]. Make your observations count! Submit your data to ebird.
    [Show full text]