3.Nishida Riesco.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

3.Nishida Riesco.Pmd 11 PRELIMINARY REPORT ON PERMINERALIZED PLANT REMAINS POSSIBLY FROM THE PALEOCENE CHORRILLO CHICO FORMATION, MAGALLANES REGION, CHILE Harufumi Nishida1, Kazuhiko Uemura2, Kazuo Terada3, Toshihiro Yamada2, Miguel Rancusi Herrera4, and Luis Felipe Hinojosa5 1Faculty of Science and Engineering, Chuo University, Bunkyo, Tokyo 112-8551, Japan E-mail: [email protected] 2National Science Museum, Tokyo 169-0073, Japan 3Fukui Prefectural Dinosaur Museum, Fukui 911-8601, Japan 4Colegio Compania de Maria, Santiago, Chile 5Facultad de Ciencias, Universidad de Chile, Santiago, Chile Introduction New assemblages of well-preserved permineralized plant fossils were found in southern Patagonia on the southern shore of Riesco Island (Isla Riesco), northwest of Punta Arenas, in the Magallanes (XII) Region of Chile (Figs. 1, 2A, B). The fragments of plant organs and tissues in various sizes and degrees of preservation are present in calcium-carbonate concretions collected at the mouth of the Rio Boer river near Punta Sunshine (53°01.8’S, 71°55.6’W). The concretions are marine in origin, containing molluskcs that may help age determination and biostratigraphic correlation of their source beds. Thick Upper Cretaceous to Tertiary sediments with a NW-SE trend dipping NE are well exposed at Riesco Island. The concretions are probably derived from sediments in the Palaeocene Chorrillo Chico Formation exposed along the Rio Boer running south into the Otway Sound (Seno Otway), because no other formation is distributed in the river drainage area (Mapa geologico de Chile, Escala 1: 1,000,000, 2002). This assignation is further supported by evidence that the Chorrillo Chico Formation is characterized by lithofacies containing calcareous concretions reported by Charrier and Lahsen (1969). This formation has already been dated as Late Cretaceous (Maastrichitian) to Paleocene (Charrier and Lahsen 1969), but was dated as Paleocene in the most recent publication (Mapa geologico de Chile, Escala 1: 1,000,000, 2002). Although the Cretaceous sediments are exposed in the west of the island, there is low possibility of a Cretaceous origin for the concretions. Further stratigraphically-controlled sampling in and around the island is needed to obtain more specimens with more reliable dating. Eight concretions were collected during fieldwork on Riesco Island in 2003 to obtain bog boring samples for palynological studies (Okuda et al. 2004). The concretions are well-sorted, spherical, and are either a single piece of wood or a rock containing a lot of plant debris in a fine sandy matrix. Plant fragments are sometimes packed in round muddy spheres of less than 1-cm diameter scattered in a sandy matrix. Woods are generally damaged by teredo boring, but tissue preservation is not bad. The plant fragments are also well-preserved. Tentative anatomical studies of the new fossil assemblage discovered a diverse array of plants and associated biota such as fungi that inhabited southernmost Patagonia during the early Paleogene. This paper tentatively describes selected elements of the assemblage to promote further investigation in Patagonia and clarify the biological history of the region. Full description and taxonomic treatment of each specimen will appear elsewhere. Materials and methods Eight concretions contained well-preserved materials that were used for anatomical study. Six concretions (nos. RC-01, RC-04, RC-05, RC-06, RC-07, RC-08) are wood pieces. Two (nos. RC- 12 Nishida et al.: Paleocene Permineralized plants of Chile Fig. 1. Map showing fossil collection site (arrow). 03, RC-09) are sandy calcium-carbonate concretions less than 10-cm in diameter containing abundant plant debris. Rocks were slabbed using a diamond-blade saw. Serial sections were prepared by the cellulose-acetate peel technique (Joy et al. 1956). Specimens were etched using ca. 3.6 % HCl solution for 30-40 s and then washed in water. Peels were mounted on microscope slides with Canada balsam, and were observed and photographed using an Olympus BX-50 light microscope with an attached PIXERA D-20 digital camera system. Digital images were processed using Adobe Photoshop 7.0J. Studied samples and most micropreparations will be stored at Museo Nacional de Historia Natural in Santiago, Chile. Supplementary reference micropreparations will also be deposited in the National Science Museum, Tokyo. Results Small fragments in the concretions represent a wide range of taxa. One 7 cm concretion (no. RC- 09) contained a fungal ascocarp, fern rhizome and rachis, four different types of fern leptosporangia each containing well-preserved tetrahedral spores, one conifer leaf, and various fragments of conifer and angiosperm woods. Two conifers and three different angiosperms have been identified among Fig. 2. A. Preparing a zodiac at fossil-collection site for navigation in Seno Otway to the west of Isla Riesco. B. Shoreline viewing west at fossil-collection site. C-H. Possible ascomycete perithecium. Specimen RC-09. C. Longitudinal section of entire body. White bubble is caused by partly porous rock matrix. Slide RC-09A#2. Scale bar 1 mm. D. Basal part of perithecium showing broken base and general tissue differntiation. fn: filamentous nest. RC-09A#4. All scale bars for D to H 100 µm. E. Basal portion enlarged. RC-09A#1. F. Distal end of perithecium showing a slit-like opening (possible ostiole; arrow). RC-09A#5. G. Structure of peripheral wall. External surface upside. RC-09A#1. H. Ascospore with three septa (arrow) in central hollow space. RC-09A#2. Nishida et al.: Paleocene Permineralized plants of Chile 13 14 Nishida et al.: Paleocene Permineralized plants of Chile permineralized woods. 1. Fungal ascocarp (Specimen RC-09, Figs. 2C-H) The fossil is an elongated pyriform of about 1.5-mm long in sectioned view, and 0.2-mm wide at the widest part of the pyriform base (Fig. 2C). About 3/4 of the entire length of the pyriform structure constitutes a neck-like elongation with somewhat laterally appressed middle portion. The tip of the pyriform structure is round and smooth. Tissues at the base of the pyriform are broken, indicating that the structure was detached from some other tissue or structure before fossilization (Fig. 2D). The structure appears to have a thick, continuous peripheral wall that surrounds a central hollow space (Fig. 2E). A loop-like string of brown tissue is isolated in the hollow space. In one section the peripheral wall is broken vertically at the distal end of the elongated neck, leaving a longitudinal slit that is continuous to the central hollow space (Fig. 2F). The peripheral wall is thickest at the structure base, and is typically differentiated into three layers (Figs. 2D-F). The outermost layer is one-to-four cells thick, consisting of elongated, thin-walled cells containing dark contents. In some parts, dark tissues are mostly decayed leaving a thin membranous outermost layer (Fig. 2G). The second layer is composed of loosely-packed round cells. The innermost tissue of the peripheral wall consists of parallel bunches of filamentous cells of irregular thickness. The brown loop-like tissue in the hollow space constitutes a layer of linear elongated, thin-walled cells that contain dark substance similar to that found in the outermost layer of the peripheral wall (Fig. 2E). The space between the peripheral wall and the loop-like tissue is mostly empty, except near the pyriform structure base where a loose nest of thin filamentous tissues is preserved (fn in Figs. 2D, E, H). This suggests the possibility that the entire space between the central loop-like tissue and the innermost layer of the peripheral wall was filled with similar filamentous nests, which are absent in the distal neck of the pyriform structure where the loop-like tissue adheres directly to the innermost layer of the thick peripheral wall (Fig.2 E). A spindle-shaped hyaline structure of about 40-µm long is found inside the loop-like tissue of one section (Fig. 2H). The structure is divided into four locules by three septa, and is similar to the septated ascospore of the ascomycetous fungi. Judging from the less-differentiated tissues consisting of thin-walled cells, the fossil structure can be compared to a fungal ascocarp. The presence of a hyaline septated spore (hyalophragmospore) further demonstrates a possible attribution to the ophiostoma-type perithecium of Pyrenomycetes (Samuels and Blackwell, 2001). The longitudinal slit at the distal end of the perithecium (Fig. 2F arrow) probably functioned as an ostiole for ascospore release. Most extant Pyrenomycetes are parasitic pathogens, but there are various other nutrition types. 2. Bryophyte gametophytes (Specimen RC-03, Figs. 3A-D) The fossil is a set of a round structure 0.13 mm in diameter (Fig. 3A) and an associated 0.2-mm wide lamina. A pointed projection from tangential surface of the round structure is similar in size and structure to the lamina (Fig. 3A). In one of successive sections other lamina is associated with the round structure at about 90° counterclockwise from the first mentioned lamina, which still remains as a thin fragment in the same section (Fig. 3B). Judging from elongated images of cells in slightly oblique section, we conclude that the round structure is a sectioned view of a columnar leafy axis with small leaves probably departing in decussate order. The axis shows weak tissue differentiation, with a central part consisting of smaller, thin-walled cells, and a peripheral part of Fig. 3. A, B. Bryophyte shoot. Successive sections showing a stem departing first (L1) and second leaves (L2). Slide RC-03B#1. Scale bar 100 µm. C, D. Possible bryophyte stem. RC-03A#4. Scale bars 100 µm. D. Showing parenchymatous center lacking conductive tissue. E-J. Protostelic fern rhizome. E. RC-09Bbot#1. F. RC-09C#2. Scale bars for E, F, 0.5 mm; for G, J, 100 µm; for H, I, 200 µm.
Recommended publications
  • A Glacial Geomorphological Map of the Seno Skyring-Seno Otway
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Durham Research Online 1 A glacial geomorphological map of the Seno Skyring-Seno 2 Otway-Strait of Magellan region, southernmost Patagonia 3 4 HAROLD LOVELL*, CHRIS R. STOKES and MICHAEL J. BENTLEY 5 6 Department of Geography, Durham University, South Road, Durham, DH1 3LE UK; *[email protected], 7 [email protected], [email protected] 8 9 Abstract: 10 11 This paper presents a detailed glacial geomorphological map covering over 16,000 12 km2 of the Seno Skyring-Seno Otway-Strait of Magellan region in southernmost 13 Patagonia. It builds on previously published maps produced at a variety of scales 14 and is re-mapped in detail for the purposes of reconstructing the pre-Last Glacial 15 Maximum (LGM) glacial dynamics of the region, with particular focus on deciphering 16 the glacial landsystem north east of Seno Otway, which has been postulated as a 17 zone of ice streaming. Additional areas of interest include the reconstruction of 18 proglacial lakes dammed by the Skyring and Otway lobes; their drainage during 19 various stages of retreat; and a landsystems approach to the overall reconstruction 20 of the combined Skyring-Otway-Magellan ice lobes. Mapping was conducted using a 21 combination of Landsat and ASTER satellite imagery and oblique and vertical aerial 22 photographs, and is centred on approximately 53°S, 71°W. Seven main landform 23 types have been mapped: glacial lineations, moraines, meltwater channels, irregular 24 dissected ridges, eskers, outwash plains and former shorelines.
    [Show full text]
  • Evolution of Ice-Dammed Proglacial Lakes in Última Esperanza, Chile: Implications from the Late-Glacial R1 Eruption of Reclús Volcano, Andean Austral Volcanic Zone
    Andean Geology 38 (1): 82-97. January, 2011 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Evolution of ice-dammed proglacial lakes in Última Esperanza, Chile: implications from the late-glacial R1 eruption of Reclús volcano, Andean Austral Volcanic Zone Charles R. Stern1, Patricio I. Moreno2, Rodrigo Villa-Martínez3, Esteban A. Sagredo2, 4, Alfredo Prieto5, Rafael Labarca6* 1 Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA. [email protected] 2 Depto. de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. [email protected] 3 Centro de Estudios del Cuaternario (CEQUA), Av. Bulnes 01890, Punta Arenas, Chile. [email protected] 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA. [email protected] 5 Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile. [email protected] 6 Programa de Doctorado Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Argentina. [email protected] * Permanent address: Juan Moya 910, Ñuñoa, Santiago, Chile. ABsTracT. Newly described outcrops, excavations and sediment cores from the region of Última Esperanza, Magalla- nes, contain tephra derived from the large late-glacial explosive R1 eruption of the Reclús volcano in the Andean Austral Volcanic Zone. New radiocarbon dates associated to these deposits refine previous estimates of the age, to 14.9 cal kyrs BP (12,670±240 14C yrs BP), and volume, to >5 km3, of this tephra. The geographic and stratigraphic distribution of R1 also place constraints on the evolution of the ice-dammed proglacial lake that existed east of the cordillera in this area between the termination of the Last Glacial Maximum (LGM) and the Holocene.
    [Show full text]
  • Late Glacial and Holocene Paleogeographical and Paleoecological Evolution of the Seno Skyring and Otway Fjord Systems in the Magellan Region
    Anales Instituto Patagonia (Chile), 2013. 41(2):5-26 5 LATE GLACIAL AND HOLOCENE PALEOGEOGRAPHICAL AND PALEOECOLOGICAL EVOLUTION OF THE SENO SKYRING AND OTWAY FJORD SYSTEMS IN THE MAGELLAN REGION EVOLUCIÓN PALEOGEOGRÁFICA Y PALEOECOLÓGICA DEL SISTEMA DE FIORDOS DEL SENO SKYRING Y SENO OTWAY EN LA REGIÓN DE MAGALLANES DURANTE EL TARDIGLACIAL Y HOLOCENO Kilian, R.1, Baeza, O.1, Breuer, S., Ríos, F.1, Arz, H.2, Lamy, F.3, Wirtz, J.1, Baque, D.1, Korf, P.1, Kremer, K.1, Ríos, C.4, Mutschke, E.5, Simon, M.1, De Pol-Holz, R.6, Arevalo, M.7, Wörner, G.8, Schneider, C.9 & Casassa, G.10 RESUMEN Los sistemas de terrazas evidencian que el Seno Otway y Skyring y el fiordo de Última Esperanza, formaron el mayor sistema lacustre proglacial interconectado de la Patagonia Austral (5.700 km2) durante la deglaciación temprana (< 18 a 14 ka BP). Este sistema drenaba por el este del Seno Otway hacia el Atlántico. El retroceso de los glaciares desde el Canal Jerónimo alrededor de 14,0 cal kyr causó un mega evento de desagüe (320 km3), que bajó 95 metros el nivel lacustre en el Seno Otway e inició una transgresión marina, así como una intensa erosión a largo plazo de las líneas de costa que quedaron expuestas alrededor del Seno Otway. Entre 11 a 10 ka BP se produjo una transgresión marina más limitada en el sector oriental del Seno Skyring, probablemente a través del Canal Gajardo. Esto fue causado por el retroceso de los glaciares alrededor del Gran Campo Nevado (GCN) durante el Máximo Termal del Holoceno Temprano en el Hemisferio Sur (después de 12 ka BP).
    [Show full text]
  • Expedition in the Remote
    Fitz Roy expedition © 2010 Luis Bertea R. EXCLUSIVE EXPLORATION CRUISE, ESPECIALLY DEDICATED TO PHOTOGRAPHY AND WILDLIFE OBSERVATION IN THE REMOTE REGION OF TIERRA DEL FUEGO AND THE MAGELLAN STRAIT 2 www.expedicionfitzroy.com Cruceros de Expedición 3 Hyatt sound © 2010 Luis Bertea R. 4 www.expedicionfitzroy.com Dear friends... We’d like to invite you to join us on this exclusive Nature Expedition aboard the M/N Forrest, sailing through the fjords of Patagonia and visiting Francisco Coloane Marine Park in the Magellan Strait. This expedition, guided by photographers and nature experts, is designed for all those who have a love for photography and nature. We are committed to making your experience in Patagonia unique, an opportunity to explore pristine landscapes visited by very few. We look forward to having you with this adventure! Fitz Roy Expedition Cruceros de Expedición 5 © 2010 Luis Bertea R. 6 www.expedicionfitzroy.com Two companies, one concept Patagonia Photosafaris has formed an This alliance has allowed us to create an alliance with Expedición Fitz Roy, to offer exploration cruise in which we’ll embark on expedition cruises through the Magellan a search for the most fascinating nature Strait and Tierra del Fuego aboard the spots Patagonia has to offer. M/N Forrest, a tourism vessel especially equipped for sailing in this area. Join us on one of our adventure cruises and discover with us this wild geography This motorship was conceived as much in its purest state, just as it was 500 years more than just a vessel to carry out ago when Ferdinand Magellan became the regular itinerary daytrips to the spectacular first European to explore it.
    [Show full text]
  • Evaluating the Role of Tectonics, Eustasy, and Climate On
    This manuscript is a preprint and has been submitted to Basin Research for peer review. Please note that, this manuscript has to be formally accepted for publication. Subsequent versions may have slight differences in content according to the peer review process. If accepted, the final version of this manuscript will be available via the ‘Peer-reviewed Publication DOI’ link on the right information panel of this website. We welcome feedback on the content of this manuscript. Please feel free to contact any of the authors. EVALUATING THE ROLE OF TECTONICS, EUSTASY, AND CLIMATE ON THE MAASTRICHTIAN-DANIAN TRANSGRESSION IN THE MAGALLANES- AUSTRAL BASIN (CHILEAN PATAGONIA) Huber A. Rivera1, 2, *, Jacobus P. Le Roux1, Marcelo Farías1, Néstor M. Gutiérrez1, Alejandro Sánchez3, Sylvia Palma-Heldt4, Lissett Celle1 1Departamento de Geología, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France 3Departamento de Ingeniería en Minas, Universidad de Santiago de Chile, Av. O'Higgins 3363, Estación Central, Santiago, Chile 4Departamento de Ciencias de la Tierra, Universidad de Concepción, Barrio Universitario S/N°, Concepción, Chile *Corresponding author: [email protected]; [email protected] Page 1 of 65 Basin Research 1 2 3 Evaluating the role of tectonics, eustasy, and climate on the Maastrichtian-Danian 4 5 6 transgression in the Magallanes-Austral Basin (Chilean Patagonia) 7 8 9 Huber A. Rivera1, 2, *, Jacobus P. Le Roux1, Marcelo Farías1, Néstor M. Gutiérrez1, 10 3 4 1 11 Alejandro Sánchez , Sylvia Palma-Heldt , Lissett Celle 12 13 1Departamento de Geología, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 14 15 2Univ.
    [Show full text]
  • A Glacial Geomorphological Map of the Seno Skyring-Seno Otway-Strait of Magellan Region, Southernmost Patagonia.', Journal of Maps., 7 (1)
    Durham Research Online Deposited in DRO: 29 August 2013 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Lovell, H. and Stokes, C.R. and Bentley, M.J. (2012) 'A glacial geomorphological map of the Seno Skyring-Seno Otway-Strait of Magellan region, southernmost Patagonia.', Journal of maps., 7 (1). pp. 318-339. Further information on publisher's website: http://dx.doi.org/10.4113/jom.2011.1156 Publisher's copyright statement: Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk 1 A glacial geomorphological map of the Seno Skyring-Seno 2 Otway-Strait of Magellan region, southernmost Patagonia 3 4 HAROLD LOVELL*, CHRIS R. STOKES and MICHAEL J. BENTLEY 5 6 Department of Geography, Durham University, South Road, Durham, DH1 3LE UK; *[email protected], 7 [email protected], [email protected] 8 9 Abstract: 10 11 This paper presents a detailed glacial geomorphological map covering over 16,000 12 km2 of the Seno Skyring-Seno Otway-Strait of Magellan region in southernmost 13 Patagonia.
    [Show full text]
  • Late Pleistocene to Holocene Marine Transgression and Thermohaline Control on Sediment Transport in the Western Magellanes Fjord System of Chile (531S)
    ARTICLE IN PRESS Quaternary International 161 (2007) 90–107 Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magellanes fjord system of Chile (531S) Rolf Kiliana,Ã, Oscar Baezaa, Tatjana Steinkea, Marcelo Arevalob, Carlos Riosb, Christoph Schneiderc aDepartment of Geology, FBVI, University of Trier, Behringstr., D-54296 Trier, Germany bInstituto de la Patagonia, University of Magellanes, Casilla 113, Punta Arenas, Chile cDepartment of Geography, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany Available online 15 December 2006 Abstract In the Western Strait of Magellan in southernmost Chile marine transgression occurred between 14,500 and 13,500 cal. BP. This is indicated by strongly increased accumulation of biogenic carbonate and first appearance of foraminifers in sediment records. From that time until 11,500 cal. BP, sedimentation in the western fjords became predominant autochthonous, due to higher salinity and clay flocculation, and Late Glacial glacier retreat. Present day thermohaline zonation pattern, extensively representative for the Holocene, and sedimentation rates indicate that westerlies hampered westward outflow of superficial (0–30 m water depth) glacial clay-rich freshwater from glaciated areas. During the Holocene, isostatic uplift of the Andes overcompensated sea level rise. In areas with high Glacial glacier loading this led to shallowing fjord sills and restricted exchange with marine water, especially since high freshwater inflow produced strong pycnoclines and preserved old saline water in fjord bottoms. To the east of the climate divide the Seno Skyring fjord system shows a year-round stable stratification, despite a strong wind-induced eastward superficial current in the upper 30–50 m of the water column.
    [Show full text]
  • Fauna Terrestre De Isla Riesco, Magallanes: Una Revisión Bibliográfica
    Anales Instituto Patagonia (Chile), 2019. Vol. 47(3):7-18 7 ARTÍCULO CIENTÍFICO Fauna terrestre de Isla Riesco, Magallanes: una revisión bibliográfica Terrestrial fauna of Riesco Island, Magallanes: a bibliographic review Javier A. Simonetti1, 2 & Gregor J. Stipicic2, 3 Resumen Casassa et al. 2002; Leppe et al. 2012; Betka et al. Se realizó una revisión de la literatura sobre la 2016). Actualmente, Isla Riesco es foco de estudio fauna terrestre reciente de Isla Riesco, Magallanes. tanto porque las actuales operaciones mineras De 60 publicaciones, que cubren los últimos 140 son consideradas un caso de injusticia ambiental años, extrajimos la información sobre los taxones, (Bustos et al. 2017), como por el significado social temas y lugares estudiados. y ambiental de la ampliación y transformación de la Reserva Nacional Alacalufes en el Parque Nacional Palabras clave: Kawésqar (Zorondo-Rodríguez et al. 2019). arácnidos, insectos, peces, anfibios, mamíferos, aves. Isla Riesco también ha sido objeto de estudios tanto de fauna actual como fósil (e.g., Abstract Markham, 1970; Hünicken et al. 1980), We performed a review of the literature on recent inspirando incluso poemas, como “Tuco tuco terrestrial fauna of Riesco Island, Magallanes. de la Isla Riesco” (Silva, 2002). Si bien existen Information regarding taxa studied, topics covered, publicaciones de difusión y generales sobre la biota and locality of study was retrieved from 60 de la región de Magallanes, incluyendo aquella publications spanning the last 140 years. de Isla Riesco (e.g. Martinic, 1957; Markham, 1971a; Venegas & Sielfeld, 1998), no existe a Key words: la fecha una síntesis de la misma. Con objeto de arachnids, insects, fish, amphibians, mammals, birds.
    [Show full text]
  • Fluctuations of the Última Esperanza Ice Lobe (52°S), Chilean Patagonia, During the Last Glacial Maximum and Termination 1
    Geomorphology 125 (2011) 92–108 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Fluctuations of the Última Esperanza ice lobe (52°S), Chilean Patagonia, during the last glacial maximum and termination 1 E.A. Sagredo a,b,⁎, P.I. Moreno a, R. Villa-Martínez c, M.R. Kaplan d, P.W. Kubik e, C.R. Stern f a Institute of Ecology and Biodiversity, Dept. of Ecological Sciences, Universidad de Chile, Casilla 653, Santiago, Chile b Department of Geology, University of Cincinnati, Cincinnati, OH, 45221, USA c Centro de Estudios del Cuaternario (CEQUA), Casilla 113-D, Punta Arenas, Chile d Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA e Laboratory of Ion Beam Physics, ETH Zurich, Zurich, Switzerland f Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA article info abstract Article history: We present a new record from the Última Esperanza region (51°25’-52°25'S), southwestern Patagonia, to Received 7 January 2010 unravel the timing and structure of glacial fluctuations during the Last Glacial Termination (T1). This sector of Received in revised form 7 September 2010 southern South America represents the only windward-facing continental landmass in the Southern Accepted 13 September 2010 Hemisphere that intersects the core of the Southern Westerly Wind belt. Available online 17 September 2010 Geomorphic, stratigraphic and geochronological evidence indicate the following stages during and since the Keywords: Last Glacial
    [Show full text]
  • Glacial and Tectonic Control on Fjord Morphology and Sediment Deposition in the Magellan Region (53°S), Chile
    Marine Geology 346 (2013) 31–46 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Glacial and tectonic control on fjord morphology and sediment deposition in the Magellan region (53°S), Chile Sonja Breuer a,⁎, Rolf Kilian a, Dirk Schörner b, Wilhelm Weinrebe b, Jan Behrmann b, Oscar Baeza a a University of Trier, Department of Geology, FB VI, Behringstraße, 54286 Trier, Germany b GEOMAR Helmholtz Institute for Ocean Research, Wischhofstraße 1-3, 4148 Kiel, Germany article info abstract Article history: In the Patagonian Andes erosion by temperate Pleistocene glaciers has produced a deeply incised fjord system in Received 12 October 2011 which glacial and non-glacial sediments were deposited since the Late Glacial glacier retreat. So far, fjord bathym- Received in revised form 6 July 2013 etry and structures in the sediment infill were widely unexplored. Here we report the results of an investigation Accepted 23 July 2013 of morphology and sediment characteristics of a 250 km long fjord transect across the southernmost Andes Available online 1 August 2013 (53°S), using multibeam and parametric echosounder data, and sediment cores. Subaquatic morphology reveals fi Communicated by J.T. Wells continuity of on-land tectonic lineaments mapped using eld and remote sensing data. Our results indicate that glacial erosion and fjord orientation are strongly controlled by three major strike-slip fault zones. Furthermore, Keywords: erosion is partly controlled by older and/or reactivated fracture zones as well as by differential resistance of reflection seismic the basement units to denudation. Basement morphology is regionally superimposed by Late Glacial and Holo- high-resolution bathymetry cene subaquatic moraines, which are associated to known glacier advances.
    [Show full text]
  • Prieto 2013 Peopling Quat Int
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Quaternary International 317 (2013) 3e13 Contents lists available at SciVerse ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint The peopling of the Fuego-Patagonian fjords by littoral huntere gatherers after the mid-Holocene H1 eruption of Hudson Volcano Alfredo Prieto a,b, Charles R. Stern c,*, Jordi E. Estévez b a Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile b Departament Prehistòria, Programa de Doctorado, Universitat Autònoma de Barcelona, Facultat de Lletres UAB, 08193 Bellaterra, Barcelona, Spain c Department of Geological Sciences, University of Colorado, 2200 Colorado Blvd, Boulder, CO 80309-0399, USA article info abstract Article history: Early Holocene (>8500 cal BP) littoral sites are well documented along the Pacific coast of Chile north of Available online 13 July 2013 32S, but they do not occur south of this latitude. It has been proposed that canoe Indians of Fuego- Patagonia, the earliest evidence for which is mid-Holocene (Punta Santa Ana; 7440 cal BP), adapted themselves to the sea from terrestrial hunteregatherer populations already living since >13,000 cal BP in southernmost South America south of 52S.
    [Show full text]
  • 11 Morello.Indd
    | 139 Obsidiana verde en Tierra del Fuego y Patagonia: caracterización, distribución y problemáticas culturales a lo largo del Holoceno Flavia Morello, Charles Stern y Manuel San Román Recibido 2 de diciembre 2014. Aceptado 17 de junio 2015 RESUMEN La obsidiana verde como materia prima utilizada por los grupos cazadores recolectores prehistóricos de Fuego-Patagonia ha estado presente en la investigación macrorregional desde su descubrimiento ar- queológico, en la década de 1950. Se presenta una nueva síntesis crítica y actualizada de los estudios en torno a esta materia prima volcánica y se discuten nuevos análisis geoquímicos, para comprender su relación con aspectos culturales como aprovisionamiento, distribución y tecnología. La localización exacta de la fuente de obtención es aún desconocida, pero indicadores arqueológicos y geológicos circunscriben su ubicación al sector del mar de Otway e isla Riesco, región de Magallanes, Chile. Se evalúan aspectos referidos a la distribución espacial y temporal del registro arqueológico de obsidiana verde, la presencia de un lapso de discontinuidad en su utilización y la discusión de su relevancia como evidencia de in- teracción cultural, entre grupos cazadores recolectores terrestres y marítimos, de oeste a este, y también entre el norte y sur del estrecho de Magallanes. Palabras clave: Obsidiana verde; Patagonia; Holoceno medio y tardío; Tecnología; Interacción. ABSTRACT GREEN OBSIDIAN IN TIERRA DEL FUEGO AND PATAGONIA: CHARACTERIZATION, DISTRIBUTION AND CULTURAL ISSUES DURING THE HOLOCENE. Green obsidian as raw material used by prehistoric hunter-gatherer groups of Fuego-Patagonia has been present in the macro-regional archaeological research since its discovery in the 1950s. A new critical synthesis and updated studies for this volcanic rock are presented and new geochemical analyses are discussed in order to understand their relation with cultural issues such as sourcing, distribution and technology.
    [Show full text]