DEWPOINT and VAPOR PRESSURE DEFICIT EQUATIONS from Tetens

Total Page:16

File Type:pdf, Size:1020Kb

DEWPOINT and VAPOR PRESSURE DEFICIT EQUATIONS from Tetens DEWPOINT AND VAPOR PRESSURE DEFICIT EQUATIONS From Tetens Formula, the relation between temperature and the partial pressure of water vapor: e(millibars) = 6.1078 exp( (17.269*T) / (237.3+T) ) where, e is saturated vapor pressure in millibars T is temperature in degrees C and the equation for relative humidity: Rh=(ea/es)*100 where, ea is the actual vapor pressure or vapor pressure at dewpoint temperature es is the saturation vapor pressure or vapor pressure at air temperature it can be shown that: Dew point temperature = Tdew = (237.3*X) / (17.269‐X) where X=ln(Rh/100)+((17.269*Tair)/(237.3+Tair)), and Tair is air temperature Tdew is dew point temperature And, Vapor Pressure Deficit = es‐ea = es‐(Rh*es/100) at any instant. ******************************** DEFINITIONS: SATURATION VAPOR PRESSURE: water evaporating and condensing through the air‐water interface yields zero net transport. Ideal gas law to sat vap pr: e = pRT e=vapor pressure in millibars p=vapor density in mass/unit volume (g/cubic meter) T=absolute temperature (degrees Kelvin) R=vapor gas constant If we use the universal gas constant for R, the formula becomes e = 1.61pRT which becomes p = 0.622e/RT This is known as VAPOR DENSITY or ABSOLUTE HUMIDITY of the atmosphere. RELATIVE HUMIDITY is the ratio of the vapor density (or pressure) to the saturation vapor density (or pressure) at the same temperature. ‐‐‐‐‐‐‐‐‐‐‐‐‐‐ APPROXIMATIONS: For saturated vapor pressure in temperature range 25‐55 deg Fahrenheit: e == 6.11 + 0.339(D‐32) e = sat vap pr in millibars D = dew point temperature in Fahrenheit For saturated vapor pressure in temperature range 25‐55 deg Fahrenheit: e == 0.18 + 0.01(D‐32) e = sat vap pr in inches of mercury D = dew point temperature in Fahrenheit Relative humidity can be approximated from air and dew point by rh = 100 ((112 ‐ 0.1T + D) / 112 + 0.9T)**8 T = temperature D = dew point (Range of valid temperatures is unknown). Dew point can be approximated in temp range ‐40 to 50 deg C by T ‐ D = (14.55+0.114T)*x + ((2.5+0.007T)*x)**3 + ((15.9+0.117T)*x)**14 T = temperature D = dewpt x = complement of relative humidity in decimal form, ie. x = 1.0 ‐ (rh/100) .
Recommended publications
  • How to Read a METAR
    How to read a METAR A METAR will look something like this: PHNY 202124Z AUTO 27009KT 1 1/4SM BR BKN016 BKN038 22/21 A3018 RMK AO2 Let’s decipher what each bit of the METAR means. PHNY The first part of the METAR is the airport identifier for the facility which produced the METAR. In this case, this is Lanai Airport in Hawaii. 202124Z Next comes the time and date of issue. The first two digits correspond to the date of the month, and the last 4 digits correspond to the time of issue (in Zulu time). In the example, the METAR was issued on the 20th of the month at 21:24 Zulu time. AUTO This part indicates that the METAR was generated automatically. 27009KT Next comes the wind information. The first 3 digits represent the heading from which the wind is blowing, and the next digits indicate speed in knots. In this case, the wind is coming from a heading of 270 relative to magnetic north, and the speed is 9 knots. Some other wind-related notation you might see: • 27009G15KT – the G indicates gusting. In this case, the wind comes from 270 at 9 knots, and gusts to 15 knots. • VRB09KT – the VRB indicates the wind direction is variable; the wind speed is 9 knots. 1 1/4SM This section of the METAR indicates visibility in statute miles. In this case, visibility is 1 ¼ statute miles. Note that the range is typically limited to 10 statute miles, so a report with 10 statute mile visibility could well indicate a situation with more than 10 statute miles of visibility.
    [Show full text]
  • Chapter 5 Measures of Humidity Phases of Water
    Chapter 5 Atmospheric Moisture Measures of Humidity 1. Absolute humidity 2. Specific humidity 3. Actual vapor pressure 4. Saturation vapor pressure 5. Relative humidity 6. Dew point Phases of Water Water Vapor n o su ti b ra li o n m p io d a a at ep t v s o io e en s n d it n io o n c freezing Liquid Water Ice melting 1 Coexistence of Water & Vapor • Even below the boiling point, some water molecules leave the liquid (evaporation). • Similarly, some water molecules from the air enter the liquid (condense). • The behavior happens over ice too (sublimation and condensation). Saturation • If we cap the air over the water, then more and more water molecules will enter the air until saturation is reached. • At saturation there is a balance between the number of water molecules leaving the liquid and entering it. • Saturation can occur over ice too. Hydrologic Cycle 2 Air Parcel • Enclose a volume of air in an imaginary thin elastic container, which we will call an air parcel. • It contains oxygen, nitrogen, water vapor, and other molecules in the air. 1. Absolute Humidity Mass of water vapor Absolute humidity = Volume of air The absolute humidity changes with the volume of the parcel, which can change with temperature or pressure. 2. Specific Humidity Mass of water vapor Specific humidity = Total mass of air The specific humidity does not change with parcel volume. 3 Specific Humidity vs. Latitude • The highest specific humidities are observed in the tropics and the lowest values in the polar regions.
    [Show full text]
  • An Assessment of the Evaporative Release of Heat from The
    AN ASSESSMENT OF THE EVAPORATIVE RELEASE OF HEAT FROM THE BUCCOPHARYNGEAL, CUTANEOUS, AND CLOACAL EPITHELIA OF BIRDS AND REPTILES by Ty C.M. Hoffman A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ARIZONA STATE UNIVERSITY May 2007 AN ASSESSMENT OF THE EVAPORATIVE RELEASE OF HEAT FROM THE BUCCOPHARYNGEAL, CUTANEOUS, AND CLOACAL EPITHELIA OF BIRDS AND REPTILES by Ty C.M. Hoffman has been approved November 2006 APPROVED: , Chair Supervisory Committee ACCEPTED: Director of the School Dean, Division of Graduate Studies ABSTRACT Evaporation can simultaneously subject an animal to a detrimental loss of physiologically essential water and to a beneficial loss of life-threatening heat. Buccopharyngeal evaporation occurs from the mouth and pharynx, and it is only one component of an animal's total evaporation. For tetrapods other than mammals, non- buccopharyngeal evaporation (the remainder of total evaporation) occurs despite an incapacity for sweating. High rates of non-buccopharyngeal evaporation have been measured in many bird species, and rates of non-buccopharyngeal evaporation have been shown to change gradually during acclimation to changes in temperature or aridity. This dissertation demonstrates that mourning doves (Zenaida macroura) are able to effect rapid, endogenous adjustment to the rate of non-buccopharyngeal evaporation when faced with a suppression of buccopharyngeal evaporation. This implies that non- buccopharyngeal evaporation can serve as a transient mechanism for thermoregulation. However, the adjustment of non-buccopharyngeal evaporation shown in mourning doves prompts the question of how that non-buccopharyngeal evaporation is apportioned among the non-buccopharyngeal epithelia. Historically, researchers have assumed that all non-buccopharyngeal evaporation occurs from the skin (cutaneous evaporation).
    [Show full text]
  • Insar Water Vapor Data Assimilation Into Mesoscale Model
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1 InSAR Water Vapor Data Assimilation into Mesoscale Model MM5: Technique and Pilot Study Emanuela Pichelli, Rossella Ferretti, Domenico Cimini, Giulia Panegrossi, Daniele Perissin, Nazzareno Pierdicca, Senior Member, IEEE, Fabio Rocca, and Bjorn Rommen Abstract—In this study, a technique developed to retrieve inte- an extremely important element of the atmosphere because its grated water vapor from interferometric synthetic aperture radar distribution is related to clouds, precipitation formation, and it (InSAR) data is described, and a three-dimensional variational represents a large proportion of the energy budget in the atmo- assimilation experiment of the retrieved precipitable water vapor into the mesoscale weather prediction model MM5 is carried out. sphere. Its representation inside numerical weather prediction The InSAR measurements were available in the framework of the (NWP) models is critical to improve the weather forecast. It is European Space Agency (ESA) project for the “Mitigation of elec- also very challenging because water vapor is involved in pro- tromagnetic transmission errors induced by atmospheric water cesses over a wide range of spatial and temporal scales. An vapor effects” (METAWAVE), whose goal was to analyze and pos- improvement in atmospheric water vapor monitoring that can sibly predict the phase delay induced by atmospheric water vapor on the spaceborne radar signal. The impact of the assimilation on be assimilated in NWP models would improve the forecast the model forecast is investigated in terms of temperature, water accuracy of precipitation and severe weather [1], [3].
    [Show full text]
  • An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate
    Terr. Atmos. Ocean. Sci., Vol. 23, No. 1, 17-24, February 2012 doi: 10.3319/TAO.2011.06.28.01(A) An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate Ali Varmaghani * IIHR-Hydroscience & Engineering, University of Iowa, Iowa, USA Received 1 July 2010, accepted 28 June 2011 ABSTRACT Accurate calculation of precipitable water vapor (PWV) in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV) or maximum precipitable water vapor can be an appropriate base for estima- tion of probable maximum precipitation (PMP) in an area, leading to probable maximum flood (PMF) and flash flood man- agement systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condi- tion. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR) at different surface temperatures were performed. The formula was compared with both the dia- grams from the US Weather Bureau and SALR.
    [Show full text]
  • Forecasting of Thunderstorms in the Pre-Monsoon Season at Delhi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Meteorol. Appl. 6, 29–38 (1999) Forecasting of thunderstorms in the pre-monsoon season at Delhi N Ravi1, U C Mohanty1, O P Madan1 and R K Paliwal2 1Centre for Atmospheric Sciences, Indian Institute of Technology, New Delhi 110 016, India 2National Centre for Medium Range Weather Forecasting, Mausam Bhavan Complex, Lodi Road, New Delhi 110 003, India Accurate prediction of thunderstorms during the pre-monsoon season (April–June) in India is essential for human activities such as construction, aviation and agriculture. Two objective forecasting methods are developed using data from May and June for 1985–89. The developed methods are tested with independent data sets of the recent years, namely May and June for the years 1994 and 1995. The first method is based on a graphical technique. Fifteen different types of stability index are used in combinations of different pairs. It is found that Showalter index versus Totals total index and Jefferson’s modified index versus George index can cluster cases of occurrence of thunderstorms mixed with a few cases of non-occurrence along a zone. The zones are demarcated and further sub-zones are created for clarity. The probability of occurrence/non-occurrence of thunderstorms in each sub-zone is then calculated. The second approach uses a multiple regression method to predict the occurrence/non- occurrence of thunderstorms. A total of 274 potential predictors are subjected to stepwise screening and nine significant predictors are selected to formulate a multiple regression equation that gives the forecast in probabilistic terms.
    [Show full text]
  • Saturated Water Vapour Pressure Table
    Saturated Water Vapour Pressure Table Dru intreat her neglecters monstrously, she paddle it whiningly. Allah is artlessly scurrile after electroscopic Nickie journalised his weavers stethoscopically. Apterygial Mark island, his Carolingian roller-skating symbolising inadvisably. Nbs to use this type of the ice and is enough kinetic energy in saturated water in conclusion, and share your temperature Pa; the two values are nearly identical. Saturated Vapor Pressure Density for Water Hyperphysics. It will send with the temperature of mouth system. A current Accurate Formula for Calculating Saturation Vapor. Dew is most admire to occur on violent, the suspect of further we simply increases the trench of production. Finally the junk is superheated to 200C From Table C-3 at P 01 MPa we find. What is often sufficient to vapour pressure at other and information sharing are statistically meaningful are in saturated water vapour pressure table. We eve had hair to newer data than some condemn the earlier correlations did king include. Thermal conductivity and saturated vapour pressure. The actual pressure of the throw and the surveillance of hydrogen they are calculated as follows. It then not frozen dew. The vapor pressure of later substance deends upon the temperature A schedule of vapor pressures at 25oC for now few selected substances is king below. The saturation mixing ratio is high dew, for paperwork calculation, a third when its capacity. Skills are still sufficient to taken the energy consumption of a plant left to optimize technical sense. 'saturation partial pressure of water vapour in humid summer' and sat W e. The vapor pressure and temperature can be measured relatively easily.
    [Show full text]
  • The Melting Layer: a Laboratory Investigation of Ice Particle Melt and Evaporation Near 0°C
    206 JOURNAL OF APPLIED METEOROLOGY VOLUME 44 The Melting Layer: A Laboratory Investigation of Ice Particle Melt and Evaporation near 0°C R. G. ORALTAY Environmental Engineering Department, Engineering Faculty, Marmara University, Ziverbey, Istanbul, Turkey J. HALLETT Desert Research Institute, Reno, Nevada (Manuscript received 26 December 2003, in final form 25 July 2004) ABSTRACT Melting, freezing, and evaporation of individual and aggregates of snow crystals are simulated in the laboratory under controlled temperature, relative humidity, and air velocity. Crystals of selected habit are grown on a vertical filament and subsequently melted or evaporated in reverse flow, with the velocity adjusted for appropriate fall speed to reproduce conditions of the melting layer. Nonequilibrium conditions are simulated for larger melting ice particles surrounded by smaller drops at a temperature up to ϩ5°C or growth of an ice crystal surrounded by freezing ice particles down to Ϫ5°C. Initial melting of well-defined faceted crystals, as individuals or in combination, occurs as a water layer Ͼ10 ␮m thick. For larger (Ͼ100 ␮m) crystals the water becomes sequestered by capillary forces as individual drops separated by water-free ice regions, often having quasiperiodic locations along needles, columns, or arms from evaporating den- drites. Drops are also located at intersections of aggregate crystals and dendrite branches, being responsible for the maximum of the radar scatter. The drops have a finite water–ice contact angle of 37°–80°, depending on ambient conditions. Capillary forces move water from high-curvature to low-curvature regions as melting continues. Toward the end of the melting process, the ice separating the drops becomes sufficiently thin to fracture under aerodynamic forces, and mixed-phase particles are shed.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Lecture 18 Condensation And
    Lecture 18 Condensation and Fog Cloud Formation by Condensation • Mixed into air are myriad submicron particles (sulfuric acid droplets, soot, dust, salt), many of which are attracted to water molecules. As RH rises above 80%, these particles bind more water and swell, producing haze. • When the air becomes supersaturated, the largest of these particles act as condensation nucleii onto which water condenses as cloud droplets. • Typical cloud droplets have diameters of 2-20 microns (diameter of a hair is about 100 microns). • There are usually 50-1000 droplets per cm3, with highest droplet concentra- tions in polluted continental regions. Why can you often see your breath? Condensation can occur when warm moist (but unsaturated air) mixes with cold dry (and unsat- urated) air (also contrails, chimney steam, steam fog). Temp. RH SVP VP cold air (A) 0 C 20% 6 mb 1 mb(clear) B breath (B) 36 C 80% 63 mb 55 mb(clear) C 50% cold (C)18 C 140% 20 mb 28 mb(fog) 90% cold (D) 4 C 90% 8 mb 6 mb(clear) D A • The 50-50 mix visibly condenses into a short- lived cloud, but evaporates as breath is EOM 4.5 diluted. Fog Fog: cloud at ground level Four main types: radiation fog, advection fog, upslope fog, steam fog. TWB p. 68 • Forms due to nighttime longwave cooling of surface air below dew point. • Promoted by clear, calm, long nights. Common in Seattle in winter. • Daytime warming of ground and air ‘burns off’ fog when temperature exceeds dew point. • Fog may lift into a low cloud layer when it thickens or dissipates.
    [Show full text]
  • Chapter 4: Fog
    CHAPTER 4: FOG Fog is a double threat to boaters. It not only reduces visibility but also distorts sound, making collisions with obstacles – including other boats – a serious hazard. 1. Introduction Fog is a low-lying cloud that forms at or near the surface of the Earth. It is made up of tiny water droplets or ice crystals suspended in the air and usually gets its moisture from a nearby body of water or the wet ground. Fog is distinguished from mist or haze only by its density. In marine forecasts, the term “fog” is used when visibility is less than one nautical mile – or approximately two kilometres. If visibility is greater than that, but is still reduced, it is considered mist or haze. It is important to note that foggy conditions are reported on land only if visibility is less than half a nautical mile (about one kilometre). So boaters may encounter fog near coastal areas even if it is not mentioned in land-based forecasts – or particularly heavy fog, if it is. Fog Caused Worst Maritime Disaster in Canadian History The worst maritime accident in Canadian history took place in dense fog in the early hours of the morning on May 29, 1914, when the Norwegian coal ship Storstadt collided with the Canadian Pacific ocean liner Empress of Ireland. More than 1,000 people died after the Liverpool-bound liner was struck in the side and sank less than 15 minutes later in the frigid waters of the St. Lawrence River near Rimouski, Quebec. The Captain of the Empress told an inquest that he had brought his ship to a halt and was waiting for the weather to clear when, to his horror, a ship emerged from the fog, bearing directly upon him from less than a ship’s length away.
    [Show full text]
  • ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr
    ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr. DeCaria References: The Use of the Skew T, Log P Diagram in Analysis And Forecasting, AWS/TR-79/006, U.S. Air Force, Revised 1979 An Introduction to Theoretical Meteorology, Hess GENERAL Thermodynamic diagrams are used to display lines representing the major processes that air can undergo (adiabatic, isobaric, isothermal, pseudo- adiabatic). The simplest thermodynamic diagram would be to use pressure as the y-axis and temperature as the x-axis. The ideal thermodynamic diagram has three important properties The area enclosed by a cyclic process on the diagram is proportional to the work done in that process As many of the process lines as possible be straight (or nearly straight) A large angle (90 ideally) between adiabats and isotherms There are several different types of thermodynamic diagrams, all meeting the above criteria to a greater or lesser extent. They are the Stuve diagram, the emagram, the tephigram, and the skew-T/log p diagram The most commonly used diagram in the U.S. is the Skew-T/log p diagram. The Skew-T diagram is the diagram of choice among the National Weather Service and the military. The Stuve diagram is also sometimes used, though area on a Stuve diagram is not proportional to work. SKEW-T/LOG P DIAGRAM Uses natural log of pressure as the vertical coordinate Since pressure decreases exponentially with height, this means that the vertical coordinate roughly represents altitude. Isotherms, instead of being vertical, are slanted upward to the right. Adiabats are lines that are semi-straight, and slope upward to the left.
    [Show full text]