Scaling Big Data Cleansing

Total Page:16

File Type:pdf, Size:1020Kb

Scaling Big Data Cleansing Scaling Big Data Cleansing Dissertation by Zuhair Yarub Khayyat In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia May, 2017 2 EXAMINATION COMMITTEE PAGE The dissertation of Zuhair Yarub Khayyat is approved by the examination committee. Committee Chairperson: Panos Kalnis | Professor Committee Members: Mohamed-Slim Alouini | Professor, Basem Shihada | Asso- ciate Professor, Marco Canini | Assistant Professor, Christoph Koch | Professor 3 ©May, 2017 Zuhair Yarub Khayyat All Rights Reserved 4 ABSTRACT Scaling Big Data Cleansing Zuhair Yarub Khayyat Data cleansing approaches have usually focused on detecting and fixing errors with little attention to big data scaling. This presents a serious impediment since identify- ing and repairing dirty data often involves processing huge input datasets, handling sophisticated error discovery approaches and managing huge arbitrary errors. With large datasets, error detection becomes overly expensive and complicated especially when considering user-defined functions. Furthermore, a distinctive algorithm is de- sired to optimize inequality joins in sophisticated error discovery rather than na¨ıvely parallelizing them. Also, when repairing large errors, their skewed distribution may obstruct effective error repairs. In this dissertation, I present solutions to overcome the above three problems in scaling data cleansing. First, I present BigDansing as a general system to tackle efficiency, scalability, and ease-of-use issues in data cleansing for Big Data. It automatically parallelizes the user's code on top of general-purpose distributed platforms. Its programming inter- face allows users to express data quality rules independently from the requirements of parallel and distributed environments. Without sacrificing their quality, BigDans- ing also enables parallel execution of serial repair algorithms by exploiting the graph representation of discovered errors. The experimental results show that BigDansing outperforms existing baselines up to more than two orders of magnitude. Although BigDansing scales cleansing jobs, it still lacks the ability to handle sophisticated error discovery requiring inequality joins. Therefore, I developed IEJoin as an algorithm for fast inequality joins. It is based on sorted arrays and space efficient 5 bit-arrays to reduce the problem's search space. By comparing IEJoin against well- known optimizations, I show that it is more scalable, and several orders of magnitude faster. BigDansing depends on vertex-centric graph systems, i.e., Pregel, to efficiently store and process discovered errors. Although Pregel scales general-purpose graph computations, it is not able to handle skewed workloads efficiently. Therefore, I introduce Mizan, a Pregel system that balances the workload transparently during runtime to adapt for changes in computing needs. Mizan is general; it does not assume any a priori knowledge of the graph structure or the algorithm behavior. Through extensive evaluations, I show that Mizan provides up to 84% improvement over techniques leveraging static graph pre-partitioning. 6 ACKNOWLEDGEMENTS To my parents, Yarub and Naida. I simply cannot thank you enough; I would have never been able to succeed in my Ph.D. without your unconditional love, en- couragement and faith. I will forever be indebted for your efforts in raising me and the education you provided me. I still remember my first programming experience Logo in from the 90s, which was the cornerstone for my passion in Computer Science. To my charming wife, Manal. I am grateful for sharing my journey toward my Ph.D.; it has been a unique experience for both of us. I am eternally grateful for your continuous love and support during this rough period. Being my wife is the best thing that ever happened to me while at KAUST. To my lovely kids, Mazin and Ziyad. Your enthusiasm in learning and doing new things always inspires me. Your energy has been consistently feeding my deter- mination and keeping me up all night. I am thankful for being in my life; my Ph.D. journey would have never been exciting without you. To my advisor, Panos Kalnis. Thank you for your confidence in me and your exceptional support throughout my Ph.D. With your teachings, I was able to compete with students from top universities and publish my work in high-quality venues. To my mentor, Hani Jamjoom. Thank you for your patience and valuable guid- ance in my early Ph.D. years. Your knowledge and experience in scientific writing helped me throughout my whole Ph.D. To my academic family, InfoCloud members. Thank you for your good com- pany, positive influence, and support through my rough times. Portions of the research in this dissertation used the MDC Database made avail- able by Idiap Research Institute, Switzerland and owned by Nokia. 7 TABLE OF CONTENTS Examination Committee Page 2 Copyright 3 Abstract 4 Acknowledgements 6 Table of Contents 7 List of Figures 11 List of Tables 15 1 Introduction 17 1.1 Dealing with Big Datasets . 19 1.2 Sophisticated Cleaning Jobs . 21 1.3 Managing Large Random Violation Graphs . 23 1.4 Contributions and dissertation Organization . 25 2 Related Work 28 2.1 Data Cleaning . 28 2.2 Scaling Inequality Joins . 31 2.3 General-purpose Scalable Graph Processing . 34 3 BigDansing: A System for Big Data Cleansing 43 3.1 Fundamentals and An Overview . 43 3.1.1 Data Cleansing Semantics . 44 3.1.2 Architecture . 46 3.2 Rule Specification . 49 3.2.1 Logical Operators . 49 3.2.2 BigDansing Example Job . 54 3.2.3 The Planning Process . 54 8 3.3 Building Physical Plans . 56 3.3.1 Physical Operators . 57 3.3.2 From Logical to Physical Plan . 58 3.3.3 Fast Joins with Ordering Comparisons . 63 3.3.4 Translation to Spark Execution Plans . 65 3.3.5 Translation to MapReduce Execution Plans . 67 3.3.6 Physical Data Access . 68 3.4 Distributed Repair Algorithms . 69 3.4.1 Scaling Data Repair as a Black Box . 70 3.4.2 Scalable Equivalence Class Algorithm . 73 3.5 Experimental Study . 74 3.5.1 Setup . 74 3.5.2 Single-Node Experiments . 77 3.5.3 Multi-Node Experiments . 80 3.5.4 Scaling BigDansing Out . 82 3.5.5 Deduplication in BigDansing ................ 82 3.5.6 BigDansing In-Depth . 83 3.6 Use Case: Violation Detection in RDF . 86 3.6.1 Source of Errors . 86 3.6.2 Integrity Violation Example . 87 3.6.3 Violation Detection Plan in BigDansing ........... 88 3.6.4 Experiments . 91 4 Fast and Scalable Inequality Joins 93 4.1 Solution Overview . 93 4.2 Centralized Algorithms . 97 4.2.1 IEJoin . 98 4.2.2 IESelfJoin . 102 4.2.3 Enhancements . 104 4.3 Query Optimization . 106 4.3.1 Selectivity Estimation . 107 4.3.2 Join Optimization with Multiple Predicates . 108 4.3.3 Multi-way Join Optimization . 109 4.4 Incremental Inequality Joins . 110 4.5 Scalable Inequality Joins . 114 4.5.1 Scalable IEJoin . 114 9 4.5.2 Multithreaded and Distributed IEJoin . 117 4.6 Integration into Existing Systems . 118 4.6.1 PostgreSQL . 118 4.6.2 Spark SQL . 120 4.6.3 BigDansing ........................... 123 4.6.4 Rheem . 124 4.7 Experimental Study . 125 4.7.1 Datasets . 125 4.7.2 Algorithms . 126 4.7.3 Queries . 128 4.7.4 Setup . 131 4.7.5 Parameter Setting . 131 4.7.6 Single-node Experiments . 134 4.7.7 IEJoin Optimizer Experiments . 139 4.7.8 Incremental IEJoin Experiments . 143 4.7.9 Multi-node Experiments . 146 5 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing 152 5.1 Dynamic Behavior of Algorithms . 152 5.1.1 Example Algorithms . 156 5.2 Mizan ................................... 158 5.2.1 Monitoring . 159 5.2.2 Migration Planning . 160 5.3 Implementation . 165 5.3.1 Vertex Ownership . 167 5.3.2 DHT Updates After Vertex Migration . 168 5.3.3 Migrating Vertices with Large Message Size . 169 5.4 Evaluation . 170 5.4.1 Giraph vs. Mizan ........................ 171 5.4.2 Effectiveness of Dynamic Vertex Migration . 173 5.4.3 Overhead of Vertex Migration . 178 5.4.4 Scalability of Mizan ....................... 179 6 Concluding Remarks 182 6.1 Summary of Contributions . 182 6.2 Future Research Directions . 184 10 References 186 Appendices 199 11 LIST OF FIGURES 1.1 The violation graph of φF and φD. Undirected edges represent com- mutative violations, while edge labels represent the violated rule and its attributes. 19 1.2 East-Coast and West-Coast transactions . 22 2.1 Example of hash-based partitioning with three partitions and seven edge cuts . 36 2.2 Example of three-way min-cuts partitioning using METIS with four edge cuts . 37 3.1 BigDansing architecture . 46 3.2 Logical operators execution for rule FD φF ............... 52 3.3 Planner execution flow . 55 3.4 Example of a logical plan . 56 3.5 Plans for DC in rule 3.1 . 60 3.6 Example plans with CoBlock . 62 3.7 A Summary of BigDansing's logical, physical and execution opera- tors for Spark. 65 3.8 Data repair as a black box. 70 3.9 Data cleansing times. 77 3.10 Single-node experiments with '1, '2, and '3 .............. 78 3.11 Multi-nodes experiments with '1, '2 and '3 .............. 79 3.12 Results for the experiments on (a) scale-out, (b) deduplication, and (c) physical optimizations. 81 3.13 (a) Abstraction and (b) scalable repair. 83 3.14 An example RDF graph . 87 3.15 An integrity constraint query graph in RDF . 89 3.16 The logical plan of the UDF detection rule in Figure 3.15 . 89 3.17 Data transformations within the logical operators in Figure 3.16 . 90 3.18 Violation detection performance on dirty RDF data .
Recommended publications
  • A Study Over Importance of Data Cleansing in Data Warehouse Shivangi Rana Er
    Volume 6, Issue 4, April 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Study over Importance of Data Cleansing in Data Warehouse Shivangi Rana Er. Gagan Prakesh Negi Kapil Kapoor Research Scholar Assistant Professor Associate Professor CSE Department CSE Department ECE Department Abhilashi Group of Institutions Abhilashi Group of Institutions Abhilashi Group of Institutions (School of Engg.) (School of Engg.) (School of Engg.) Chail Chowk, Mandi, India Chail Chowk, Mandi, India Chail Chowk Mandi, India Abstract: Cleansing data from impurities is an integral part of data processing and maintenance. This has lead to the development of a broad range of methods intending to enhance the accuracy and thereby the usability of existing data. In these days, many organizations tend to use a Data Warehouse to meet the requirements to develop decision-making processes and achieve their goals better and satisfy their customers. It enables Executives to access the information they need in a timely manner for making the right decision for any work. Decision Support System (DSS) is one of the means that applied in data mining. Its robust and better decision depends on an important and conclusive factor called Data Quality (DQ), to obtain a high data quality using Data Scrubbing (DS) which is one of data Extraction Transformation and Loading (ETL) tools. Data Scrubbing is very important and necessary in the Data Warehouse (DW). This paper presents a survey of sources of error in data, data quality challenges and approaches, data cleaning types and techniques and an overview of ETL Process.
    [Show full text]
  • Oracle Paas and Iaas Universal Credits Service Descriptions
    Oracle PaaS and IaaS Universal Credits Service Descriptions Effective Date: 10-September-2021 Oracle UCM 091021 Page 1 of 202 Table of Contents metrics 6 Oracle PaaS and IaaS Universal Credit 20 1. AVAILABLE SERVICES 20 a. Eligible Oracle PaaS Cloud Services 20 b. Eligible Oracle IaaS Cloud Services 20 c. Additional Services 20 d. Always Free Cloud Services 21 Always Free Cloud Services 22 2. ACTIVATION USAGE AND BILLING 23 a. Introduction 23 i. Annual Universal Credit 24 Overage 24 Replenishment of Account at End of Services Period 25 Additional Services 25 ii. Monthly Universal Credit (subject to Oracle approval) 25 Overage 26 Orders Placed via a Partner 26 Replenishment of Account at End of Services Period 26 iii. Pay as You Go 26 iv. Funded Allocation Model 27 Overage 27 Additional Services 28 Replenishment of Account at End of Services Period 28 3. INCLUDED SERVICES 28 i. Developer Cloud Service 28 ii. Oracle Identity Foundation Cloud Service 29 b. Additional Licenses and Oracle Linux Technical Support 29 c. Oracle Cloud Infrastructure Data Catalog 30 d. Oracle Cloud Infrastructure Data Transfer Disk 30 Your Obligations/Responsibilities and Project Assumptions 30 Your Obligations/Responsibilities 31 Project Assumptions 31 Export 32 Oracle Cloud Infrastructure - Application Migration 32 f. Oracle Cloud Infrastructure Console 33 g. Oracle Cloud Infrastructure Cloud Shell 33 Access and Usage 33 4. SERVICES AVAILABLE VIA THE ORACLE CLOUD MARKETPLACE 33 a. Oracle Cloud Services Delivered via the Oracle Cloud Marketplace 33 b. Third Party
    [Show full text]
  • Bigdansing: a System for Big Data Cleansing
    BigDansing: A System for Big Data Cleansing Zuhair Khayyaty∗ Ihab F. Ilyas‡∗ Alekh Jindal] Samuel Madden] Mourad Ouzzanix Paolo Papottix Jorge-Arnulfo Quiané-Ruizx Nan Tangx Si Yinx xQatar Computing Research Institute ]CSAIL, MIT yKing Abdullah University of Science and Technology (KAUST) zUniversity of Waterloo [email protected] [email protected] {alekh,madden}@csail.mit.edu {mouzzani,ppapotti,jquianeruiz,ntang,siyin}@qf.org.qa ABSTRACT name zipcode city state salary rate t1 Annie 10001 NY NY 24000 15 Data cleansing approaches have usually focused on detect- t2 Laure 90210 LA CA 25000 10 ing and fixing errors with little attention to scaling to big t3 John 60601 CH IL 40000 25 datasets. This presents a serious impediment since data t4 Mark 90210 SF CA 88000 28 cleansing often involves costly computations such as enu- t5 Robert 60827 CH IL 15000 15 t Mary 90210 LA CA 81000 28 merating pairs of tuples, handling inequality joins, and deal- 6 Table 1: Dataset D with tax data records ing with user-defined functions. In this paper, we present BigDansing, a Big Data Cleansing system to tackle ef- have a lower tax rate; and (r3) two tuples refer to the same ficiency, scalability, and ease-of-use issues in data cleans- individual if they have similar names, and their cities are ing. The system can run on top of most common general inside the same county. We define these rules as follows: purpose data processing platforms, ranging from DBMSs (r1) φF : D(zipcode ! city) to MapReduce-like frameworks. A user-friendly program- (r2) φD : 8t1; t2 2 D; :(t1:rate > t2:rate ^ t1:salary < t2:salary) (r3) φU : 8t1; t2 2 D; :(simF(t1:name; t2:name)^ ming interface allows users to express data quality rules both getCounty(t :city) = getCounty(t :city)) declaratively and procedurally, with no requirement of being 1 2 aware of the underlying distributed platform.
    [Show full text]
  • Data Profiling and Data Cleansing Introduction
    Data Profiling and Data Cleansing Introduction 9.4.2013 Felix Naumann Overview 2 ■ Introduction to research group ■ Lecture organisation ■ (Big) data □ Data sources □ Profiling □ Cleansing ■ Overview of semester Felix Naumann | Profiling & Cleansing | Summer 2013 Information Systems Team 3 DFG IBM Prof. Felix Naumann Arvid Heise Katrin Heinrich project DuDe Dustin Lange Duplicate Detection Data Fusion Data Profiling project Stratosphere Entity Search Johannes Lorey Christoph Böhm Information Integration Data Scrubbing project GovWILD Data as a Service Data Cleansing Information Quality Web Data Linked Open Data RDF Data Mining Dependency Detection ETL Management Anja Jentzsch Service-Oriented Systems Entity Opinion Ziawasch Abedjan Recognition Mining Tobias Vogel Toni Grütze HPI Research School Dr. Gjergji Kasneci Zhe Zuo Maximilian Jenders Felix Naumann | Profiling & Cleansing | Summer 2013 Other courses in this semester 4 Lectures ■ DBS I (Bachelor) ■ Data Profiling and Data Cleansing Seminars ■ Master: Large Scale Duplicate Detection ■ Master: Advanced Recommendation Techniques Bachelorproject ■ VIP 2.0: Celebrity Exploration Felix Naumann | Profiling & Cleansing | Summer 2013 Seminar: Advanced Recommendation Techniques 5 ■ Goal: Cross-platform recommendation for posts on the Web □ Given a post on a website, find relevant (i.e., similar) posts from other websites □ Analyze post, author, and website features □ Implement and compare different state-of-the-art recommendation techniques … … Calculate (,) (i.e., the similarity between posts and ) … Recommend top-k posts ? … Overview 7 ■ Introduction to research group ■ Lecture organization ■ (Big) data □ Data sources □ Profiling □ Cleansing ■ Overview of semester Felix Naumann | Profiling & Cleansing | Summer 2013 Dates and exercises 8 ■ Lectures ■ Exam □ Tuesdays 9:15 – 10:45 □ Oral exam, 30 minutes □ Probably first week after □ Thursdays 9:15 – 10:45 lectures ■ Exercises ■ Prerequisites □ In parallel □ To participate ■ First lecture ◊ Background in □ 9.4.2013 databases (e.g.
    [Show full text]
  • Big Data Analytics for Large Scale Wireless Networks: Challenges and Opportunities
    Big Data Analytics for Large Scale Wireless Networks: Challenges and Opportunities HONG-NING DAI∗, Macau University of Science and Technology RAYMOND CHI-WING WONG, the Hong Kong University of Science and Technology (HKUST) HAO WANG, Norwegian University of Science and Technology ZIBIN ZHENG, Sun Yat-sen University ATHANASIOS V. VASILAKOS, Lulea University of Technology The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large scale wireless networks. Big data of large scale wireless networks has the key features of wide variety, high volume, real-time velocity and huge value leading to the unique research challenges that are dierent from existing computing systems. In this paper, we present a survey of the state-of-art big data analytics (BDA) approaches for large scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area. Additional Key Words and Phrases: Big Data; Data mining; Wireless Networks ACM Reference format: Hong-Ning Dai, Raymond Chi-Wing Wong, Hao Wang, Zibin Zheng, and Athanasios V. Vasilakos. 2019. Big Data Analytics for Large Scale Wireless Networks: Challenges and Opportunities. 1, 1, Article 1 (May 2019), 46 pages. DOI: 10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION In recent years, we have seen the proliferation of wireless communication technologies, which are widely used today across the globe to fulll the communication needs from the extremely large number of end users.
    [Show full text]
  • A Review of Data Cleaning Algorithms for Data Warehouse Systems Rajashree Y.Patil,#, Dr
    Rajashree Y. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5212 - 5214 A Review of Data Cleaning Algorithms for Data Warehouse Systems Rajashree Y.Patil,#, Dr. R.V.Kulkarni * # Vivekanand College, Kolhapur, Maharashtra, India *Shahu Institute of Business and Research ( SIBER) Kolhapur, Maharashtra, India Abstract— In today’s competitive environment, there is a need Data Cleaning Algorithm is an algorithm, a process used for more precise information for a better decision making. Yet to determine inaccurate, incomplete, or unreasonable data the inconsistency in the data submitted makes it difficult to and then improving the quality through correction of aggregate data and analyze results which may delays or data detected errors and commissions. The process may include compromises in the reporting of results. The purpose of this format checks, completeness checks, reasonable checks, article is to study the different algorithms available to clean the data to meet the growing demand of industry and the need and limit checks, review of the data to identify outliers for more standardised data. The data cleaning algorithms can (geographic, statistical, temporal or environmental) or other increase the quality of data while at the same time reduce the errors, and assessment of data by subject area experts (e.g. overall efforts of data collection. taxonomic specialists). These processes usually result in flagging, documenting and subsequent checking and Keywords— ETL, FD, SNM-IN, SNM-OUT, ERACER correction of suspect records. Validation checks may also involve checking for compliance against applicable I. INTRODUCTION standards, rules and conventions. Data cleaning is a method of adjusting or eradicating Data cleaning Approaches - In general data cleaning information in a database that is wrong, unfinished, involves several phases.
    [Show full text]
  • Study of Data Cleaning & Comparison of Data Cleaning Tools
    Sapna Devi et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.3, March- 2015, pg. 360-370 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 4, Issue. 3, March 2015, pg.360 – 370 RESEARCH ARTICLE Study of Data Cleaning & Comparison of Data Cleaning Tools Sapna Devi1, Dr. Arvind Kalia2 ¹Himachal Pradesh University Shimla, India ²Himachal Pradesh University Shimla, India 1 [email protected]; 2 [email protected] Abstract— Data Cleaning is a major issue. Data mining requires clean, consistent and noise free data. Incorrect or inconsistent data can lead to false conclusion and misdirect investment on both public and private scale. Data comes from various systems and in many different forms. It may be incomplete, yet it is a raw material for data mining. This research paper provides an overview of data cleaning problems, data quality, cleaning approaches and comparison of data cleaning tool. Keywords: Data cleaning, Data Quality, Data Preprocessing I. INTRODUCTION Data cleaning is part of data preprocessing before data mining, prior to process of mining information in a data warehouse, data cleaning is crucial because of garbage in and garbage out principle[1].Data cleaning is also called data cleansing or scrubbing deals with detecting and removing errors and inconsistencies from data in order to improve quality of data. The main objective of data cleaning is to reduce the time and complexity of mining process and increase the quality of datum in data warehouse.
    [Show full text]
  • Data Quality Measures and Data Cleansing for Research Information Systems Otmane Azeroual, Gunter Saake, Mohammad Abuosba
    Data Quality Measures and Data Cleansing for Research Information Systems Otmane Azeroual, Gunter Saake, Mohammad Abuosba To cite this version: Otmane Azeroual, Gunter Saake, Mohammad Abuosba. Data Quality Measures and Data Cleansing for Research Information Systems. Journal of Digital Information Management, Digital Information Research Foundation, 2018, 16 (1), pp.12-21. hal-01972675 HAL Id: hal-01972675 https://hal.archives-ouvertes.fr/hal-01972675 Submitted on 16 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Data Quality Measures and Data Cleansing for Research Information Sys- tems Otmane Azeroual1, 2, 3, Gunter Saake2, Mohammad Abuosba3 1 German Center For Higher Education Research And Science Studies (Dzhw), 10117 Berlin, Germany 2 Otto-Von-Guericke University Magdeburg, Department Of Computer Journal of Digital Science Institute For Technical And Business Information Systems Information Management Database Research Group P.O. Box 4120; 39106 Magdeburg, Germany 3 University Of Applied Sciences Htw Berlin Study Program Computational
    [Show full text]
  • Problems, Methods, and Challenges in Comprehensive Data Cleansing
    Problems, Methods, and Challenges in Comprehensive Data Cleansing Heiko Müller, Johann-Christoph Freytag Humboldt-Universität zu Berlin zu Berlin, 10099 Berlin, Germany {hmueller, freytag}@dbis.informatik.hu-berlin.de Abstract Cleansing data from impurities is an integral part of data processing and mainte- nance. This has lead to the development of a broad range of methods intending to enhance the accuracy and thereby the usability of existing data. This paper pre- sents a survey of data cleansing problems, approaches, and methods. We classify the various types of anomalies occurring in data that have to be eliminated, and we define a set of quality criteria that comprehensively cleansed data has to ac- complish. Based on this classification we evaluate and compare existing ap- proaches for data cleansing with respect to the types of anomalies handled and eliminated by them. We also describe in general the different steps in data clean- sing and specify the methods used within the cleansing process and give an out- look to research directions that complement the existing systems. 1 Contents 1 Introduction ............................................................................................................................. 3 2 Motivation ............................................................................................................................... 4 3 Data Anomalies....................................................................................................................... 5 3.1 Data Model......................................................................................................................
    [Show full text]
  • Data Cleansing and Analysis for Benchmarking
    Weatherization And Intergovernmental Programs Office Benchmarking Data Cleansing: Mona Khalil, U.S. DOE A Rite of Passage Along the Benchmarking Journey Shankar Earni, LBNL April 30, 2015 1 DOE’s State and Local Technical Assistance • General Education (fact sheets, 101s) • Implementation Models (case studies) Resources • Research and Tools for Decision-Making • Protocols (how-to guides, model documents) • Webinars Peer Exchange & • Conferences and in-person trainings • Better Buildings Project Teams Trainings • Accelerators Direct • On a limited basis • Level of effort will vary Assistance • In-depth efforts will be focus on: o High impact efforts o Opportunities for replicability o Filling gaps in the technical assistance marketplace 2 How to tap into these and other TAP offerings • Visit the STATE AND LOCAL SOLUTION CENTER http://energy.gov/eere/slsc/state-and-local-solution-center • Sign up for TAP Alerts by emailing [email protected] 3 Course Outline • Course Objectives • Building Benchmarking • Bad Data – What is it? – Types – Common Issues • Data Cleansing – What it is? – Why do it? • Data Cleansing Process – Identify/fix incorrect data types – Identify/fix missing or erroneous values – Identify/fix outliers/other inconsistencies – Check and fix to ensure internal consistency • Data Cleansing on a Sample Data Set 4 Course Objectives Intended Audience Cities, communities, and states that have implemented or are considering implementing an internal or community-wide benchmarking and/or disclosure program or policy
    [Show full text]
  • Data and Information Quality Research: Its Evolution and Future
    16 Data and Information Quality Research: Its Evolution and Future 16.1 Introduction .................................................................................... 16-1 16.2 Evolution of Data Quality Research ............................................16-2 TDQM Framework as the Foundation • Establishment and Growth of the Field and Profession 16.3 Framework for Characterizing Data Quality Research ............16-4 16.4 Research Topics ...............................................................................16-5 Hongwei Zhu Data Quality Impact • Database-Related Technical Solutions for University of Massachusetts Data Quality • Data Quality in the Context of Computer Science and Information Technology • Data Quality in Curation Stuart E. Madnick 16.5 Research Methods.........................................................................16-12 Massachusetts Institute Action Research • Artificial Intelligence • Case of Technology Study • Data Mining • Design Yang W. Lee Science • Econometrics • Empirical • Experimental • Mathematical Modeling • Qualitative • Quantitative • Statistical Northeastern University Analysis • System Design and Implementation • Survey • Theory Richard Y. Wang and Formal Proofs Massachusetts Institute 16.6 Challenges and Conclusion ......................................................... 16-14 of Technology References ..................................................................................................16-15 16.1 Introduction Organizations have increasingly invested in technology and human
    [Show full text]
  • Extract Transform Load (ETL) Process in Distributed Database Academic Data Warehouse
    APTIKOM Journal on Computer Science and Information Technologies Vol. 4, No. 2, 2019, pp. 61~68 ISSN: 2528-2417 DOI: 10.11591/APTIKOM.J. SIT.36 61 Extract transform load (ET ) process in distributed database academic data warehouse Ardhian Agung Yulianto Industrial Engineering Department, Engineering .acult0, Andalas 1ni2ersit0 Kampus 3imau Manis Kota Padang, 4est Sumatera, Indonesia, 25163 Corresponding author, e-mail: ardhian.a06eng.unand.ac.id Abstract While a data warehouse is desi ned to support the decision-makin function, the most time-consumin part is the Extract Transform Load )ETL) process. Case in Academic Data Warehouse, when data source came from the faculty.s distributed database, althou h havin a typical database but become not easier to inte rate. This paper presents how to an ETL process in distributed database academic data warehouse. 0ollowin Data 0low Thread process in the data sta in area, a deep analysis performed for identifyin all tables in each data sources, includin content profilin . Then the cleanin , confirmin , and data delivery steps pour the different data source into the data warehouse )DW). 1ince DW development usin bottom-up 2imball.s multidimensional approach, we found the three types of extraction activities from data source table3 mer e, mer e-union, and union. Result for cleanin and conformin step set by creatin conform dimension on data source analysis, refinement, and hierarchy structure. The final of the ETL step is loadin it into inte ratin dimension and fact tables by a eneration of a surro ate key. Those processes are runnin radually from each distributed database data sources until it incorporated.
    [Show full text]