ETL Best Practices for Data Quality Checks in RIS Databases

Total Page:16

File Type:pdf, Size:1020Kb

ETL Best Practices for Data Quality Checks in RIS Databases informatics Article ETL Best Practices for Data Quality Checks in RIS Databases Otmane Azeroual 1,2,3,* , Gunter Saake 2 and Mohammad Abuosba 3 1 German Center for Higher Education Research and Science Studies (DZHW), Schützenstraße 6a, 10117 Berlin, Germany 2 Institute for Technical and Business Information Systems—Database Research Group, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; [email protected] 3 Department of Computer Science and Engineering, University of Applied Sciences—HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 25 December 2018; Accepted: 27 February 2019; Published: 5 March 2019 Abstract: The topic of data integration from external data sources or independent IT-systems has received increasing attention recently in IT departments as well as at management level, in particular concerning data integration in federated database systems. An example of the latter are commercial research information systems (RIS), which regularly import, cleanse, transform and prepare the analysis research information of the institutions of a variety of databases. In addition, all these so-called steps must be provided in a secured quality. As several internal and external data sources are loaded for integration into the RIS, ensuring information quality is becoming increasingly challenging for the research institutions. Before the research information is transferred to a RIS, it must be checked and cleaned up. An important factor for successful or competent data integration is therefore always the data quality. The removal of data errors (such as duplicates and harmonization of the data structure, inconsistent data and outdated data, etc.) are essential tasks of data integration using extract, transform, and load (ETL) processes. Data is extracted from the source systems, transformed and loaded into the RIS. At this point conflicts between different data sources are controlled and solved, as well as data quality issues during data integration are eliminated. Against this background, our paper presents the process of data transformation in the context of RIS which gains an overview of the quality of research information in an institution’s internal and external data sources during its integration into RIS. In addition, the question of how to control and improve the quality issues during the integration process in RIS will be addressed. Keywords: research information systems (RIS); heterogeneous information sources; metadata; data integration; data transformation; extraction transformation load (ETL) technology; data quality 1. Introduction In recent years, there has been a new trend in which universities, research institutions and researchers capture, integrate, store and analyze their research information into a research information system (RIS). Other names for the term RIS are current research information system (CRIS), especially in Europe, and RIMS (research information management system), RNS (research networking system) or FAR (faculty activity reporting). The RIS is a central database or federated information system [1,2] that can be used to collect, manage and provide a variety of information about research activities and research results. The information represented here are metadata about an institution’s research activities, e.g., personal data, projects, third-party funds, publications, patents and prizes, etc. and Informatics 2019, 6, 10; doi:10.3390/informatics6010010 www.mdpi.com/journal/informatics Informatics 2019, 6, 10 2 of 13 Informatics 2019, 6, x 2 of 14 illustratesare referred the to type as research of research information information. [3]. Furthe The followingr definitions Figure of 1the illustrates term RIS the in the type literature of research can beinformation. found in the Further related definitions papers [4–6]. of the term RIS in the literature can be found in the related papers [4–6]. FigureFigure 1. 1. TypeType of of research research information processed and integrated into research information system. For the the institutions, institutions, it it is is a auseful useful tool tool to to clearly clearly present present their their own own research research profile profile and and thus thus an effectivean effective tool tool for for information information management. management. The The unification unification and and facilitation facilitation of of strategic strategic research reporting creates added value for the administrators, as well as forfor thethe scientists.scientists. The expense of documenting projects projects is is reduced for the scientists, thus gaining more time for the actual research process. The RIS can also support additional helper functions for scientists: e.g., the creation of CVs and publication lists, or other reuse of the aggregated data from RIS onon aa website.website. The most important decision-making and and reporting tools in many institutions are RIS that collectively integrate integrate the the data data from from many many heterogeneous heterogeneous and and independent independent information information systems. systems. In orderIn order to avoid to avoid structural structural and and content-related content-related data data quality quality issues issues and and thereby thereby reduce reduce the the effective effective use of researchresearch information, information, the the transformation transformation of research of research information information takes place takes during place the during integration the integrationprocess. “Data process. integration “Data improvesintegration the improves usability th ofe datausability by improving of data by consistency, improving completeness, consistency, completeness,accessibility, and accessibility, other dimensions and other of dimensions data quality” of [data7]. Data quality” integration [7]. Data is theintegration correct, completeis the correct, and completeefficient merging and efficient of data merging and content of data from and heterogeneous content from heterogeneous sources into a consistentsources into and a structuredconsistent andset ofstructured information set of for information effective interpretation for effective interp by usersretation and by applications users and [applications8]. Filling of [8]. RIS Filling should of RISalready should be ensuredalready be in goodensured quality in good as partquality of theas part integration of the integration process. However, process. theyHowever, should they be shouldcontinually be continually defined, measured, defined, measured, analyzed, analyzed, and improved and improved to increase to interoperabilityincrease interoperability with external with externalsystems, systems, improve improve performance performance and usability, and usability, and address and data address quality data issues quality [9]. issues Therefore, [9]. Therefore, investing investingin the topic in ofthe data topic integration of data integration is particularly is particularly useful when useful the when achievement the achievement of high data of high quality data is qualityparamount is paramount [10]. This [10]. is also This the is case also for the RIS case users for RIS and users it is expectedand it is expected that decisions that decisions based on based relevant, on relevant,complete, complete, correct and correct current and data current will increasedata will the increase chance the of chance getting of better getting results better [11 results]. [11]. The purpose purpose of of this this paper paper will will be be to topresent present the the process process of data of data transformation transformation that thatcontrols controls and improvesand improves the data the data quality quality issues issues in RIS, in RIS, to toenab enablele institutions institutions to to perform perform in-depth in-depth analysis analysis and evaluation on existing or current data, and thus to meet the needs of their decision makers.makers. The first first chapter discusses the causes of data qu qualityality issues in RIS that may be responsible for reducing datadata quality.quality. Subsequently, Subsequently, the the phases phases of theof integrationthe integration process proce aress described are described in the contextin the contextof RIS. Theof RIS. chapter The chapter concludes concludes with approaches with approaches to eliminate to eliminate dataquality data qualit issuesy issues from from external external data datasources sources in the in transformation the transformation phase phase into RIS.into RIS. 2. Causes of Data Quality Issues in the Context of Integrating Research Information 2. Causes of Data Quality Issues in the Context of Integrating Research Information Data quality defined as “fitness for use” and its assurance is recognized as a valid and important Data quality defined as “fitness for use” and its assurance is recognized as a valid and activity, but in practice only a few people list it the highest priority [12]. The quality of the data important activity, but in practice only a few people list it the highest priority [12]. The quality of the depends to a great extent on the use of data and synergies of customer needs, the usability and the data depends to a great extent on the use of data and synergies of customer needs, the usability and the access of data [13]. Therefore, during evaluating and improving data quality, the involvement of Informatics 2019, 6, 10 3 of 13 access of data [13]. Therefore, during evaluating
Recommended publications
  • The Savvy Survey #16: Data Analysis and Survey Results1 Milton G
    AEC409 The Savvy Survey #16: Data Analysis and Survey Results1 Milton G. Newberry, III, Jessica L. O’Leary, and Glenn D. Israel2 Introduction In order to evaluate the effectiveness of a program, an agent or specialist may opt to survey the knowledge or Continuing the Savvy Survey Series, this fact sheet is one of attitudes of the clients attending the program. To capture three focused on working with survey data. In its most raw what participants know or feel at the end of a program, he form, the data collected from surveys do not tell much of a or she could implement a posttest questionnaire. However, story except who completed the survey, partially completed if one is curious about how much information their clients it, or did not respond at all. To truly interpret the data, it learned or how their attitudes changed after participation must be analyzed. Where does one begin the data analysis in a program, then either a pretest/posttest questionnaire process? What computer program(s) can be used to analyze or a pretest/follow-up questionnaire would need to be data? How should the data be analyzed? This publication implemented. It is important to consider realistic expecta- serves to answer these questions. tions when evaluating a program. Participants should not be expected to make a drastic change in behavior within the Extension faculty members often use surveys to explore duration of a program. Therefore, an agent should consider relevant situations when conducting needs and asset implementing a posttest/follow up questionnaire in several assessments, when planning for programs, or when waves in a specific timeframe after the program (e.g., six assessing customer satisfaction.
    [Show full text]
  • Data Quality: Letting Data Speak for Itself Within the Enterprise Data Strategy
    Data Quality: Letting Data Speak for Itself within the Enterprise Data Strategy Collaboration & Transformation (C&T) Shared Interest Group (SIG) Financial Management Committee DATA Act – Transparency in Federal Financials Project Date Released: September 2015 SYNOPSIS Data quality and information management across the enterprise is challenging. Today’s information systems consist of multiple, interdependent platforms that are interfaced across the enterprise. Each of these systems and the business processes they support often use and define the same piece of data differently. How the information is used across the enterprise becomes a critical part of the equation when managing data quality. Letting the data speak for itself is the process of analyzing how the data and information is used across the enterprise, providing details on how the data is defined, what systems and processes are responsible for authoring and maintaining the data, and how the information is used to support the agency, and what needs to be done to support data quality and governance. This information also plays a critical role in the agency’s capacity to meet the requirements of the DATA Act. American Council for Technology-Industry Advisory Council (ACT-IAC) 3040 Williams Drive, Suite 500, Fairfax, VA 22031 www.actiac.org ● (p) (703) 208.4800 (f) ● (703) 208.4805 Advancing Government through Collaboration, Education and Action Data Quality: Letting the Data Speak for Itself within the Enterprise Data Strategy American Council for Technology-Industry Advisory Council (ACT-IAC) The American Council for Technology (ACT) is a non-profit educational organization established in 1979 to improve government through the efficient and innovative application of information technology.
    [Show full text]
  • Evolution of the Infographic
    EVOLUTION OF THE INFOGRAPHIC: Then, now, and future-now. EVOLUTION People have been using images and data to tell stories for ages—long before the days of the Internet, smartphones, and Excel. In fact, the history of infographics pre-dates the web by more than 30,000 years with the earliest forms of these visuals being cave paintings that helped early humans find food, resources, and shelter. But as technology has advanced, so has our ability to tell meaningful stories. Here’s a look into the evolution of modern infographics—where they’ve been, how they’ve evolved, and where they’re headed. Then: Printed, static infographics The 20th Century introduced the infographic—a staple for how we communicate, visualize, and share information today. Early on, these print graphics married illustration and data to communicate information in a revolutionary way. ADVANTAGE Design elements enable people to quickly absorb information previously confined to long paragraphs of text. LIMITATION Static infographics didn’t allow for deeper dives into the data to explore granularities. Hoping to drill down for more detail or context? Tough luck—what you see is what you get. Source: http://www.wired.co.uk/news/archive/2012-01/16/painting- by-numbers-at-london-transport-museum INFOGRAPHICS THROUGH THE AGES DOMO 03 Now: Web-based, interactive infographics While the first wave of modern infographics made complex data more consumable, web-based, interactive infographics made data more explorable. These are everywhere today. ADVANTAGE Everyone looking to make data an asset, from executives to graphic designers, are now building interactive data stories that deliver additional context and value.
    [Show full text]
  • Informal Data Transformation Considered Harmful
    Informal Data Transformation Considered Harmful Eric Daimler, Ryan Wisnesky Conexus AI out the enterprise, so that data and programs that depend on that data need not constantly be re-validated for ev- ery particular use. Computer scientists have been develop- ing techniques for preserving data integrity during trans- formation since the 1970s (Doan, Halevy, and Ives 2012); however, we agree with the authors of (Breiner, Subrah- manian, and Jones 2018) and others that these techniques are insufficient for the practice of AI and modern IT sys- tems integration and we describe a modern mathematical approach based on category theory (Barr and Wells 1990; Awodey 2010), and the categorical query language CQL2, that is sufficient for today’s needs and also subsumes and unifies previous approaches. 1.1 Outline To help motivate our approach, we next briefly summarize an application of CQL to a data science project undertaken jointly with the Chemical Engineering department of Stan- ford University (Brown, Spivak, and Wisnesky 2019). Then, in Section 2 we review data integrity and in Section 3 we re- view category theory. Finally, we describe the mathematics of our approach in Section 4, and conclude in Section 5. We present no new results, instead citing a line of work summa- rized in (Schultz, Spivak, and Wisnesky 2017). Image used under a creative commons license; original 1.2 Motivating Case Study available at http://xkcd.com/1838/. In scientific practice, computer simulation is now a third pri- mary tool, alongside theory and experiment. Within
    [Show full text]
  • Scientific Data Mining in Astronomy
    SCIENTIFIC DATA MINING IN ASTRONOMY Kirk D. Borne Department of Computational and Data Sciences, George Mason University, Fairfax, VA 22030, USA [email protected] Abstract We describe the application of data mining algorithms to research prob- lems in astronomy. We posit that data mining has always been fundamen- tal to astronomical research, since data mining is the basis of evidence- based discovery, including classification, clustering, and novelty discov- ery. These algorithms represent a major set of computational tools for discovery in large databases, which will be increasingly essential in the era of data-intensive astronomy. Historical examples of data mining in astronomy are reviewed, followed by a discussion of one of the largest data-producing projects anticipated for the coming decade: the Large Synoptic Survey Telescope (LSST). To facilitate data-driven discoveries in astronomy, we envision a new data-oriented research paradigm for astron- omy and astrophysics – astroinformatics. Astroinformatics is described as both a research approach and an educational imperative for modern data-intensive astronomy. An important application area for large time- domain sky surveys (such as LSST) is the rapid identification, charac- terization, and classification of real-time sky events (including moving objects, photometrically variable objects, and the appearance of tran- sients). We describe one possible implementation of a classification broker for such events, which incorporates several astroinformatics techniques: user annotation, semantic tagging, metadata markup, heterogeneous data integration, and distributed data mining. Examples of these types of collaborative classification and discovery approaches within other science disciplines are presented. arXiv:0911.0505v1 [astro-ph.IM] 3 Nov 2009 1 Introduction It has been said that astronomers have been doing data mining for centuries: “the data are mine, and you cannot have them!”.
    [Show full text]
  • EMC Greenplum Data Computing Appliance: High Performance for Data Warehousing and Business Intelligence an Architectural Overview
    EMC Greenplum Data Computing Appliance: High Performance for Data Warehousing and Business Intelligence An Architectural Overview EMC Information Infrastructure Solutions Abstract This white paper provides readers with an overall understanding of the EMC® Greenplum® Data Computing Appliance (DCA) architecture and its performance levels. It also describes how the DCA provides a scalable end-to- end data warehouse solution packaged within a manageable, self-contained data warehouse appliance that can be easily integrated into an existing data center. October 2010 Copyright © 2010 EMC Corporation. All rights reserved. EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice. THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license. For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com All other trademarks used herein are the property of their respective owners. Part number: H8039 EMC Greenplum Data Computing Appliance: High Performance for Data Warehousing and Business Intelligence—An Architectural Overview 2 Table of Contents Executive summary .................................................................................................
    [Show full text]
  • SUGI 28: the Value of ETL and Data Quality
    SUGI 28 Data Warehousing and Enterprise Solutions Paper 161-28 The Value of ETL and Data Quality Tho Nguyen, SAS Institute Inc. Cary, North Carolina ABSTRACT Information collection is increasing more than tenfold each year, with the Internet a major driver in this trend. As more and more The adage “garbage in, garbage out” becomes an unfortunate data is collected, the reality of a multi-channel world that includes reality when data quality is not addressed. This is the information e-business, direct sales, call centers, and existing systems sets age and we base our decisions on insights gained from data. If in. Bad data (i.e. inconsistent, incomplete, duplicate, or inaccurate data is entered without subsequent data quality redundant data) is affecting companies at an alarming rate and checks, only inaccurate information will prevail. Bad data can the dilemma is to ensure that how to optimize the use of affect businesses in varying degrees, ranging from simple corporate data within every application, system and database misrepresentation of information to multimillion-dollar mistakes. throughout the enterprise. In fact, numerous research and studies have concluded that data quality is the culprit cause of many failed data warehousing or Customer Relationship Management (CRM) projects. With the Take into consideration the director of data warehousing at a large price tags on these high-profile initiatives and the major electronic component manufacturer who realized there was importance of accurate information to business intelligence, a problem linking information between an inventory database and improving data quality has become a top management priority. a customer order database.
    [Show full text]
  • Automating the Capture of Data Transformations from Statistical Scripts in Data Documentation Jie Song George Alter H
    C2Metadata: Automating the Capture of Data Transformations from Statistical Scripts in Data Documentation Jie Song George Alter H. V. Jagadish University of Michigan University of Michigan University of Michigan Ann Arbor, Michigan Ann Arbor, Michigan Ann Arbor, Michigan [email protected] [email protected] [email protected] ABSTRACT CCS CONCEPTS Datasets are often derived by manipulating raw data with • Information systems → Data provenance; Extraction, statistical software packages. The derivation of a dataset transformation and loading. must be recorded in terms of both the raw input and the ma- nipulations applied to it. Statistics packages typically provide KEYWORDS limited help in documenting provenance for the resulting de- data transformation, data documentation, data provenance rived data. At best, the operations performed by the statistical ACM Reference Format: package are described in a script. Disparate representations Jie Song, George Alter, and H. V. Jagadish. 2019. C2Metadata: Au- make these scripts hard to understand for users. To address tomating the Capture of Data Transformations from Statistical these challenges, we created Continuous Capture of Meta- Scripts in Data Documentation. In 2019 International Conference data (C2Metadata), a system to capture data transformations on Management of Data (SIGMOD ’19), June 30-July 5, 2019, Am- in scripts for statistical packages and represent it as metadata sterdam, Netherlands. ACM, New York, NY, USA, 4 pages. https: in a standard format that is easy to understand. We do so by //doi.org/10.1145/3299869.3320241 devising a Structured Data Transformation Algebra (SDTA), which uses a small set of algebraic operators to express a 1 INTRODUCTION large fraction of data manipulation performed in practice.
    [Show full text]
  • A Machine Learning Approach to Outlier Detection and Imputation of Missing Data1
    Ninth IFC Conference on “Are post-crisis statistical initiatives completed?” Basel, 30-31 August 2018 A machine learning approach to outlier detection and imputation of missing data1 Nicola Benatti, European Central Bank 1 This paper was prepared for the meeting. The views expressed are those of the authors and do not necessarily reflect the views of the BIS, the IFC or the central banks and other institutions represented at the meeting. A machine learning approach to outlier detection and imputation of missing data Nicola Benatti In the era of ready-to-go analysis of high-dimensional datasets, data quality is essential for economists to guarantee robust results. Traditional techniques for outlier detection tend to exclude the tails of distributions and ignore the data generation processes of specific datasets. At the same time, multiple imputation of missing values is traditionally an iterative process based on linear estimations, implying the use of simplified data generation models. In this paper I propose the use of common machine learning algorithms (i.e. boosted trees, cross validation and cluster analysis) to determine the data generation models of a firm-level dataset in order to detect outliers and impute missing values. Keywords: machine learning, outlier detection, imputation, firm data JEL classification: C81, C55, C53, D22 Contents A machine learning approach to outlier detection and imputation of missing data ... 1 Introduction ..............................................................................................................................................
    [Show full text]
  • What Is a Data Warehouse?
    What is a Data Warehouse? By Susan L. Miertschin “A data warehouse is a subject oriented, integrated, time variant, nonvolatile, collection of data in support of management's decision making process.” https: //www. bus iness.auc. dk/oe kostyr /file /What_ is_a_ Data_ Ware house.pdf 2 What is a Data Warehouse? “A copy of transaction data specifically structured for query and analysis” 3 “Data Warehousing is the coordination, architected, and periodic copying of data from various sources, both inside and outside the enterprise, into an environment optimized for analytical and informational processing” ‐ Alan Simon Data Warehousing for Dummies 4 Business Intelligence (BI) • “…implies thinking abstractly about the organization, reasoning about the business, organizing large quantities of information about the business environment.” p. 6 in Giovinazzo textbook • Purpose of BI is to define and execute a strategy 5 Strategic Thinking • Business strategist – Always looking forward to see how the company can meet the objectives reflected in the mission statement • Successful companies – Do more than just react to the day‐to‐day environment – Understand the past – Are able to predict and adapt to the future 6 Business Intelligence Loop Business Intelligence Figure 1‐1 p. 2 Giovinazzo • Encompasses entire loop shown Business Strategist • Data Storage + ETC = OLAP Data Mining Reports Data Warehouse Data Storage • Data WhWarehouse + Tools (yellow) = Extraction,Transformation, Cleaning DiiDecision Support CRM Accounting Finance HR System 7 The Data Warehouse Decision Support Systems Central Repository Metadata Dependent Data DtData Mar t EtExtrac tion DtData Log Administration Cleansing/Tranformation External Extraction Source Extraction Store Independent Data Mart Operational Environment Figure 1-2 p.
    [Show full text]
  • Using Survey Data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1
    ukdataservice.ac.uk Using survey data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1 Acknowledgement/Citation These pages are based on the following workbook, funded by the Economic and Social Research Council (ESRC). Williamson, Lee, Mark Brown, Jo Wathan, Vanessa Higgins (2013) Secondary Analysis for Social Scientists; Analysing the fear of crime using the British Crime Survey. Updated version by Sarah King-Hele. Centre for Census and Survey Research We are happy for our materials to be used and copied but request that users should: • link to our original materials instead of re-mounting our materials on your website • cite this as an original source as follows: Buckley, Jen and Sarah King-Hele (2015). Using survey data. UK Data Service, University of Essex and University of Manchester. UK Data Service – Using survey data Contents 1. Introduction 3 2. Before you start 4 2.1. Research topic and questions 4 2.2. Survey data and secondary analysis 5 2.3. Concepts and measurement 6 2.4. Change over time 8 2.5. Worksheets 9 3. Find data 10 3.1. Survey microdata 10 3.2. UK Data Service 12 3.3. Other ways to find data 14 3.4. Evaluating data 15 3.5. Tables and reports 17 3.6. Worksheets 18 4. Get started with survey data 19 4.1. Registration and access conditions 19 4.2. Download 20 4.3. Statistics packages 21 4.4. Survey weights 22 4.5. Worksheets 24 5. Data analysis 25 5.1. Types of variables 25 5.2. Variable distributions 27 5.3.
    [Show full text]
  • Data Quality Through Data Integration: How Integrating Your IDEA Data Will Help Improve Data Quality
    center for the integration of IDEA Data Data Quality Through Data Integration: How Integrating Your IDEA Data Will Help Improve Data Quality July 2018 Authors: Sara Sinani & Fred Edora High-quality data is essential when looking at student-level data, including data specifically focused on students with disabilities. For state education agencies (SEAs), it is critical to have a solid foundation for how data is collected and stored to achieve high-quality data. The process of integrating the Individuals with Disabilities Education Act (IDEA) data into a statewide longitudinal data system (SLDS) or other general education data system not only provides SEAs with more complete data, but also helps SEAs improve accuracy of federal reporting, increase the quality of and access to data within and across data systems, and make better informed policy decisions related to students with disabilities. Through the data integration process, including mapping data elements, reviewing data governance processes, and documenting business rules, SEAs will have developed documented processes and policies that result in more integral data that can be used with more confidence. In this brief, the Center for the Integration of IDEA Data (CIID) provides scenarios based on the continuum of data integration by focusing on three specific scenarios along the integration continuum to illustrate how a robust integrated data system improves the quality of data. Scenario A: Siloed Data Systems Data systems where the data is housed in separate systems and State Education Agency databases are often referred to as “data silos.”1 These data silos are isolated from other data systems and databases.
    [Show full text]