Super Lexicon! 1 Prelab 2 Lab Program

Total Page:16

File Type:pdf, Size:1020Kb

Super Lexicon! 1 Prelab 2 Lab Program CSCI 136: Fall 2017 Lab 8 Handout L8 Due 5 November 29 October Super Lexicon! 1 Prelab Before lab, read through this entire handout carefully. Construct a design document for the LexiconNode class as described in Section 2.3. We will briefly go over this design together at the beginning of lab on Wednesday, and we will collect your design documents. Please bring a physical copy or a PDF document. 2 Lab Program Virtually all modern word processors contain a feature to check the spelling of words in documents. More advanced word processors also provide suggested corrections for misspelled words. For your next lab, you will be taking on the fun and challenging task of implementing such a spelling corrector. You are to implement a highly-efficient Lexicon class and go on to augment it with additional functionality to find spelling corrections for misspelled words. The assignment has several purposes: • To gain further skill with recursion in managing a recursive tree structure and exploring it using sophisticated algorithms; • To explore the notion of a layered abstraction where one class (Lexicon) makes use of other classes (e.g., Iterator, Vector, Set) as part of its internal representation. 2.1 The Lexicon Interface Your first task is to implement a basic Lexicon class. You may recall this class from the recursion lab (Lab 3), where an optional extension used Lexicon.class to provide word completions for T-9 word cell-phones (if you want to see such a cell phone “in the wild”, Bill J has one). Now, you’ll get a chance to build a lexicon yourself to see the kind of specialized and highly-efficient data structures that are used in its implementation. This version has similar functionality to the Lexicon from the Lab 3 extension, with additional operations to remove words, iterate over words, and read words from a text file. The following methods are in the Lexicon interface. You should implement this interface in a file called LexiconTrie.java. public interface Lexicon { boolean addWord(String word); boolean removeWord(String word); boolean containsWord(String word); boolean containsPrefix(String prefix); int addWordsFromFile(String filename); int numWords(); Iterator<String> iterator(); Set<String> suggestCorrections(String target, int maxDistance); Set<String> matchRegex(String pattern); } Most of the method behaviors can be inferred from their names and return types. For more information about the usage and purpose of these methods, refer to the comments in the starter code. 1 2 Implementing the Lexicon as a trie 2.2There Implementing are several different the Lexicon data structures as a Trie you could use to implement a lexicon— a sorted array, a Therelinked are list, several a binary different search data structures tree, a hashtable, you could use and to many implement others. a lexicon—a Each of sorted these array, offers a linkedtradeoffs list, abetween binary searchthe speed tree, and of manyword others. and prefix Each of lookup, these offers amount tradeoffs of betweenmemory the required speed of wordto store and prefixthe data lookup, structure, amount ofthe memoryease of required writing to and store debugging the data structure, the code, the ease performance of writing and of add/remove, debugging the code,and so performance on. The implementation of add/remove, andwe so will on. Theuse implementationis a special kind we willof tree use iscalled a special a trie kind (pronounced of tree called "try"), a trie (pronounced designed for “try”), just designed this purpose. for just this purpose. AA trie trie is is a a letter-tree that that efficiently efficiently stores stores strings. strings. A node A in node a trie representsin a trie represents a letter. A path a letter. through A thepath trie through traces outthe a sequencetrie traces of lettersout a thatsequence represent of aletters prefix orthat word represent in the lexicon. a prefix or word in the lexicon. Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one for each letter ofInstead the alphabet). of just Whereas two children searching as ain binary a binary search tree, tree each eliminates trie node half thehas words potentially with a left26 orchild right pointers turn (we will(one eventuallyfor each discuss letter binaryof the searchalphabet). trees in Whereas class), a search searching in a trie a followsbinary thesearch child tree pointer eliminates for the next half letter, the whichwords narrowswith a the left search or right to just turn, words a search starting in with a trie that follows letter. For the example, child pointer from the for root, the any next words letter, that which begin withnarrows “n” canthe be search found byto followingjust words the pointerstarting to with the “n” that child letter. node. For From example, there, following from the “o” root, leads toany just words those wordsthat begin that beginwith with n can “no” be and found so on, by recursively. following If the two pointer words have to the the samen child prefix, node. they From share thatthere, initial following part of their o leads paths. to Thisjust saves those space words since that there begin are typically with no many and sharedso on prefixesrecursively. among words.If twoEach words node have has athe boolean sameisWord prefix, flagthey whichshare indicates that initial that thepart path of takentheir frompaths. the This root to saves this node space represents since there a complete are typically word. Here’s many a conceptual shared prefixes picture ofamong a small trie:words. Each node has a boolean isWord flag which indicates that the path taken from the root to this node represents a word. Here's a conceptual picture of a small trie: Start A N Z R S E O E E W T N The thick border around a node indicates its isWord flag is true. This trie contains the words: a, are,The thickas, bordernew, aroundno, not, a node and indicates zen. that Strings its isWord suchflag as isze true. or Thisar are trie containsnot valid the words words: fora, this are, trie as,because new, the no, path not, forand thosezen strings. Strings ends such at as aze nodeor ar whereare not isWord valid words is false. for this Any trie becausepath not the drawn path for is thoseassumed strings to ends not at exist, a node so where stringsisWord such isas false. cat Anyor next path notare drawnnot valid is assumed because to not there exist, is sono strings such suchpath as in catthisor trie.astronaut are not valid because there is no such path in this trie. Like other trees, a trie is a recursive data structure. All of the children of a given trie node are themselves smaller tries.Like You other will betrees, making a trie good is usea recursive of your recursion data structure. skills when operatingAll of the on thechildren trie! of a given trie node are themselves smaller tries. You will be making good use of your recursion skills when operating on 2.3the trie! Managing Node Children ForManaging each node innode the trie, children you need a list of pointers to children nodes. In the sample trie drawn above, the root node hasFor three each children, node onein the each trie, for the you letters need A, a N, list and of Z. pointers One possibility to children for storing nodes. the children In the pointers sample is a trie statically- drawn sizedabove, 26-member the root array node of pointershas three to children, nodes, where onearray[0] each for isthe the letters child forA, A,N,array[1] and Z. Onerefers possibility to B, ... and for array[25]storing therefers children to Z. Whenpointers there is is a nostatically-sized child for a given 26-member letter, (such as array from Zof to pointers X) the array to entrynodes, would where be nullarray[0]. This is arrangement the child makesfor A, it array[1] trivial to findrefers the to child B, for... and a given array[25] letter—you refers simply to Z. access When the correctthere is element no child in thefor array a given by letter letter, index. (such as from Z to X) the array entry would be NULL. This arrangement makes it trivialHowever, to find for the most child nodes for within a given the trie,letter, very you few simply of the 26access pointers the arecorrect needed, element so using in athe largely arraynull by letter26- memberindex. array However, is much for too most expensive nodes (i.e., within it wastes the a trie, lot ofvery space). few Better of the alternatives 26 pointers would are be needed, a dynamically-sized so using a arraylargely which NULL can grow 26-member and shrink array as needed is much (i.e., too a Vector), expensive. or a linked Better list alternatives of children pointers. would be We a leavedynamically- the final choicesized of array a space-efficient which can design grow upand to you,shrink but asyou needed, should justifya linked the list choice of children you make pointers, (briefly) inor yourleveraging program the comments. Two things you may want to consider: standard classes in our toolkit, such as a VectorList or Set, to store the children pointers. We leave the final1. there choice are at of most a space-efficient 26 children, so even design a O(N) up to you,operation but you to find should a particular justify child the is choice O(1), and you make in your2. trie program operations comments. such as iteration Two requirethings traversing you may the want words to in consider: alphabetical there order, are so keepingat most the 26 list children, of children so evenpointers a O(N) sorted operation by letter to will find be advantageous.a particular child is no big deal, and operations such as writing the 2 3 words to a file need to access the words in alphabetical order, so keeping the list of children pointersBegin sorted implementing by letter your will trie be by advantageous.
Recommended publications
  • Use Perl Regular Expressions in SAS® Shuguang Zhang, WRDS, Philadelphia, PA
    NESUG 2007 Programming Beyond the Basics Use Perl Regular Expressions in SAS® Shuguang Zhang, WRDS, Philadelphia, PA ABSTRACT Regular Expression (Regexp) enhance search and replace operations on text. In SAS®, the INDEX, SCAN and SUBSTR functions along with concatenation (||) can be used for simple search and replace operations on static text. These functions lack flexibility and make searching dynamic text difficult, and involve more function calls. Regexp combines most, if not all, of these steps into one expression. This makes code less error prone, easier to maintain, clearer, and can improve performance. This paper will discuss three ways to use Perl Regular Expression in SAS: 1. Use SAS PRX functions; 2. Use Perl Regular Expression with filename statement through a PIPE such as ‘Filename fileref PIPE 'Perl programm'; 3. Use an X command such as ‘X Perl_program’; Three typical uses of regular expressions will also be discussed and example(s) will be presented for each: 1. Test for a pattern of characters within a string; 2. Replace text; 3. Extract a substring. INTRODUCTION Perl is short for “Practical Extraction and Report Language". Larry Wall Created Perl in mid-1980s when he was trying to produce some reports from a Usenet-Nes-like hierarchy of files. Perl tries to fill the gap between low-level programming and high-level programming and it is easy, nearly unlimited, and fast. A regular expression, often called a pattern in Perl, is a template that either matches or does not match a given string. That is, there are an infinite number of possible text strings.
    [Show full text]
  • Lecture 18: Theory of Computation Regular Expressions and Dfas
    Introduction to Theoretical CS Lecture 18: Theory of Computation Two fundamental questions. ! What can a computer do? ! What can a computer do with limited resources? General approach. Pentium IV running Linux kernel 2.4.22 ! Don't talk about specific machines or problems. ! Consider minimal abstract machines. ! Consider general classes of problems. COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126 2 Why Learn Theory In theory . Regular Expressions and DFAs ! Deeper understanding of what is a computer and computing. ! Foundation of all modern computers. ! Pure science. ! Philosophical implications. a* | (a*ba*ba*ba*)* In practice . ! Web search: theory of pattern matching. ! Sequential circuits: theory of finite state automata. a a a ! Compilers: theory of context free grammars. b b ! Cryptography: theory of computational complexity. 0 1 2 ! Data compression: theory of information. b "In theory there is no difference between theory and practice. In practice there is." -Yogi Berra 3 4 Pattern Matching Applications Regular Expressions: Basic Operations Test if a string matches some pattern. Regular expression. Notation to specify a set of strings. ! Process natural language. ! Scan for virus signatures. ! Search for information using Google. Operation Regular Expression Yes No ! Access information in digital libraries. ! Retrieve information from Lexis/Nexis. Concatenation aabaab aabaab every other string ! Search-and-replace in a word processors. cumulus succubus Wildcard .u.u.u. ! Filter text (spam, NetNanny, Carnivore, malware). jugulum tumultuous ! Validate data-entry fields (dates, email, URL, credit card). aa Union aa | baab baab every other string ! Search for markers in human genome using PROSITE patterns. aa ab Closure ab*a abbba ababa Parse text files.
    [Show full text]
  • Perl Regular Expressions Tip Sheet Functions and Call Routines
    – Perl Regular Expressions Tip Sheet Functions and Call Routines Basic Syntax Advanced Syntax regex-id = prxparse(perl-regex) Character Behavior Character Behavior Compile Perl regular expression perl-regex and /…/ Starting and ending regex delimiters non-meta Match character return regex-id to be used by other PRX functions. | Alternation character () Grouping {}[]()^ Metacharacters, to match these pos = prxmatch(regex-id | perl-regex, source) $.|*+?\ characters, override (escape) with \ Search in source and return position of match or zero Wildcards/Character Class Shorthands \ Override (escape) next metacharacter if no match is found. Character Behavior \n Match capture buffer n Match any one character . (?:…) Non-capturing group new-string = prxchange(regex-id | perl-regex, times, \w Match a word character (alphanumeric old-string) plus "_") Lazy Repetition Factors Search and replace times number of times in old- \W Match a non-word character (match minimum number of times possible) string and return modified string in new-string. \s Match a whitespace character Character Behavior \S Match a non-whitespace character *? Match 0 or more times call prxchange(regex-id, times, old-string, new- \d Match a digit character +? Match 1 or more times string, res-length, trunc-value, num-of-changes) Match a non-digit character ?? Match 0 or 1 time Same as prior example and place length of result in \D {n}? Match exactly n times res-length, if result is too long to fit into new-string, Character Classes Match at least n times trunc-value is set to 1, and the number of changes is {n,}? Character Behavior Match at least n but not more than m placed in num-of-changes.
    [Show full text]
  • Unicode Regular Expressions Technical Reports
    7/1/2019 UTS #18: Unicode Regular Expressions Technical Reports Working Draft for Proposed Update Unicode® Technical Standard #18 UNICODE REGULAR EXPRESSIONS Version 20 Editors Mark Davis, Andy Heninger Date 2019-07-01 This Version http://www.unicode.org/reports/tr18/tr18-20.html Previous Version http://www.unicode.org/reports/tr18/tr18-19.html Latest Version http://www.unicode.org/reports/tr18/ Latest Proposed http://www.unicode.org/reports/tr18/proposed.html Update Revision 20 Summary This document describes guidelines for how to adapt regular expression engines to use Unicode. Status This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in progress. A Unicode Technical Standard (UTS) is an independent specification. Conformance to the Unicode Standard does not imply conformance to any UTS. Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this document is found in the References. For the latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more information about versions of the Unicode Standard, see [Versions]. Contents 0 Introduction 0.1 Notation 0.2 Conformance 1 Basic Unicode Support: Level 1 1.1 Hex Notation 1.1.1 Hex Notation and Normalization 1.2 Properties 1.2.1 General
    [Show full text]
  • Regular Expressions with a Brief Intro to FSM
    Regular Expressions with a brief intro to FSM 15-123 Systems Skills in C and Unix Case for regular expressions • Many web applications require pattern matching – look for <a href> tag for links – Token search • A regular expression – A pattern that defines a class of strings – Special syntax used to represent the class • Eg; *.c - any pattern that ends with .c Formal Languages • Formal language consists of – An alphabet – Formal grammar • Formal grammar defines – Strings that belong to language • Formal languages with formal semantics generates rules for semantic specifications of programming languages Automaton • An automaton ( or automata in plural) is a machine that can recognize valid strings generated by a formal language . • A finite automata is a mathematical model of a finite state machine (FSM), an abstract model under which all modern computers are built. Automaton • A FSM is a machine that consists of a set of finite states and a transition table. • The FSM can be in any one of the states and can transit from one state to another based on a series of rules given by a transition function. Example What does this machine represents? Describe the kind of strings it will accept. Exercise • Draw a FSM that accepts any string with even number of A’s. Assume the alphabet is {A,B} Build a FSM • Stream: “I love cats and more cats and big cats ” • Pattern: “cat” Regular Expressions Regex versus FSM • A regular expressions and FSM’s are equivalent concepts. • Regular expression is a pattern that can be recognized by a FSM. • Regex is an example of how good theory leads to good programs Regular Expression • regex defines a class of patterns – Patterns that ends with a “*” • Regex utilities in unix – grep , awk , sed • Applications – Pattern matching (DNA) – Web searches Regex Engine • A software that can process a string to find regex matches.
    [Show full text]
  • Regular Expressions
    CS 172: Computability and Complexity Regular Expressions Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum The Picture So Far DFA NFA Regular language S. A. Seshia 2 Today’s Lecture DFA NFA Regular Regular language expression S. A. Seshia 3 Regular Expressions • What is a regular expression? S. A. Seshia 4 Regular Expressions • Q. What is a regular expression? • A. It’s a “textual”/ “algebraic” representation of a regular language – A DFA can be viewed as a “pictorial” / “explicit” representation • We will prove that a regular expressions (regexps) indeed represent regular languages S. A. Seshia 5 Regular Expressions: Definition σ is a regular expression representing { σσσ} ( σσσ ∈∈∈ ΣΣΣ ) ε is a regular expression representing { ε} ∅ is a regular expression representing ∅∅∅ If R 1 and R 2 are regular expressions representing L 1 and L 2 then: (R 1R2) represents L 1⋅⋅⋅L2 (R 1 ∪∪∪ R2) represents L 1 ∪∪∪ L2 (R 1)* represents L 1* S. A. Seshia 6 Operator Precedence 1. *** 2. ( often left out; ⋅⋅⋅ a ··· b ab ) 3. ∪∪∪ S. A. Seshia 7 Example of Precedence R1*R 2 ∪∪∪ R3 = ( ())R1* R2 ∪∪∪ R3 S. A. Seshia 8 What’s the regexp? { w | w has exactly a single 1 } 0*10* S. A. Seshia 9 What language does ∅∅∅* represent? {ε} S. A. Seshia 10 What’s the regexp? { w | w has length ≥ 3 and its 3rd symbol is 0 } ΣΣΣ2 0 ΣΣΣ* Σ = (0 ∪∪∪ 1) S. A. Seshia 11 Some Identities Let R, S, T be regular expressions • R ∪∪∪∅∅∅ = ? • R ···∅∅∅ = ? • Prove: R ( S ∪∪∪ T ) = R S ∪∪∪ R T (what’s the proof idea?) S.
    [Show full text]
  • Context-Free Grammar for the Syntax of Regular Expression Over the ASCII
    Context-free Grammar for the syntax of regular expression over the ASCII character set assumption : • A regular expression is to be interpreted a Haskell string, then is used to match against a Haskell string. Therefore, each regexp is enclosed inside a pair of double quotes, just like any Haskell string. For clarity, a regexp is highlighted and a “Haskell input string” is quoted for the examples in this document. • Since ASCII character strings will be encoded as in Haskell, therefore special control ASCII characters such as NUL and DEL are handled by Haskell. context-free grammar : BNF notation is used to describe the syntax of regular expressions defined in this document, with the following basic rules: • <nonterminal> ::= choice1 | choice2 | ... • Double quotes are used when necessary to reflect the literal meaning of the content itself. <regexp> ::= <union> | <concat> <union> ::= <regexp> "|" <concat> <concat> ::= <term><concat> | <term> <term> ::= <star> | <element> <star> ::= <element>* <element> ::= <group> | <char> | <emptySet> | <emptyStr> <group> ::= (<regexp>) <char> ::= <alphanum> | <symbol> | <white> <alphanum> ::= A | B | C | ... | Z | a | b | c | ... | z | 0 | 1 | 2 | ... | 9 <symbol> ::= ! | " | # | $ | % | & | ' | + | , | - | . | / | : | ; | < | = | > | ? | @ | [ | ] | ^ | _ | ` | { | } | ~ | <sp> | \<metachar> <sp> ::= " " <metachar> ::= \ | "|" | ( | ) | * | <white> <white> ::= <tab> | <vtab> | <nline> <tab> ::= \t <vtab> ::= \v <nline> ::= \n <emptySet> ::= Ø <emptyStr> ::= "" Explanations : 1. Definition of <metachar> in our definition of regexp: Symbol meaning \ Used to escape a metacharacter, \* means the star char itself | Specifies alternatives, y|n|m means y OR n OR m (...) Used for grouping, giving the group priority * Used to indicate zero or more of a regexp, a* matches the empty string, “a”, “aa”, “aaa” and so on Whi tespace char meaning \n A new line character \t A horizontal tab character \v A vertical tab character 2.
    [Show full text]
  • PHP Regular Expressions
    PHP Regular Expressions What is Regular Expression Regular Expressions, commonly known as "regex" or "RegExp", are a specially formatted text strings used to find patterns in text. Regular expressions are one of the most powerful tools available today for effective and efficient text processing and manipulations. For example, it can be used to verify whether the format of data i.e. name, email, phone number, etc. entered by the user was correct or not, find or replace matching string within text content, and so on. PHP (version 5.3 and above) supports Perl style regular expressions via its preg_ family of functions. Why Perl style regular expressions? Because Perl (Practical Extraction and Report Language) was the first mainstream programming language that provided integrated support for regular expressions and it is well known for its strong support of regular expressions and its extraordinary text processing and manipulation capabilities. Let's begin with a brief overview of the commonly used PHP's built-in pattern- matching functions before delving deep into the world of regular expressions. Function What it Does preg_match() Perform a regular expression match. preg_match_all() Perform a global regular expression match. preg_replace() Perform a regular expression search and replace. preg_grep() Returns the elements of the input array that matched the pattern. preg_split() Splits up a string into substrings using a regular expression. preg_quote() Quote regular expression characters found within a string. Note: The PHP preg_match() function stops searching after it finds the first match, whereas the preg_match_all() function continues searching until the end of the string and find all possible matches instead of stopping at the first match.
    [Show full text]
  • A Quick Guide to PERL Regular Expressions Second Edition © 2006 Transliteration: Translate Operator Tr/// EXPR =~ Tr/SEARCHLIST/REPLACELIST/Cds
    \W Any non-word character. Warning \w != \S Search&Replace: substitution operator s/// A Quick Guide To EXPR =~ s/MOTIF/REPLACE/egimosx POSIX Character class PERL Regular Expressions Example: correct typo for the word rabbit [[:class:]] class can be any of: $ex =~ s/rabit/rabbit/g; alnum alpha ascii blank cntrl digit graph lower This is a Quick reference Guide for PERL regular expressions Here is the content of $ex: print punct space upper xdigit (also known as regexps or regexes). The ID sp:UBP5_RAT is similar to the rabbit AC tr:Q12345 These tools are used to describe text as “motifs” or “patterns” for matching, quoting, substituting or translitterating. Each Example: find and tag any TrEMBL AC Special characters programming language (Perl, C, Java, Python...) define its $ex =~ s/tr:/trembl_ac=/g; \a alert (bell) Here is the content of $ex: own regular expressions although the syntax might differ from \b backspace details to extensive changes. In this guide we will concentrate The ID sp:UBP5_RAT is similar to the rabit AC trembl_ \e escape ac=Q12345 on the Perl regexp syntax, we assume that the reader has some \f form feed preliminary knowledge of Perl programming. Options \n newline \r carriage return e evaluate REPLACE as an expression Perl uses a Traditional Nondeterministic Finite Automata \t horizontal tabulation (NFA) match engine. This means that it will compare each g global matches (matches all occurrences) element of the motif to the input string, keeping track of i case insensitive \nnn octal nnn the positions. The engine choose the first leftmost match m multiline, allow “^” and “$” to match with (\n) \xnn hexadecimal nn after greedy (i.e., longest possible match) quantifiers have o compile MOTIF only once \cX control character X matched.
    [Show full text]
  • CSCI 3434: Theory of Computation Lecture 4: Regular Expressions
    CSCI 3434: Theory of Computation Lecture 4: Regular Expressions Ashutosh Trivedi 0; 1 0; 1 1 0;" 1 start s1 s2 s3 s4 Department of Computer Science University of Colorado Boulder Ashutosh Trivedi { 1 of 21 Ashutosh Trivedi Lecture 3: Regular Expressions Definition (Regular Languages) We call a language regular if it can be accepted by a deterministic finite state automaton. What are Regular Languages? { An alphabet Σ = fa; b; cg is a finite set of letters, { The set of all strings (aka, words) Σ∗ over an alphabet Σ can be recursively defined as: as : { Base case: " 2 Σ∗ (empty string), { Induction: If w 2 Σ∗ then wa 2 Σ∗ for all a 2 Σ. {A language L over some alphabet Σ is a set of strings, i.e. L ⊆ Σ∗. { Some examples: ∗ { Leven = fw 2 Σ : w is of even lengthg ∗ n m { La∗b∗ = fw 2 Σ : w is of the form a b for n; m ≥ 0g ∗ n n { Lanbn = fw 2 Σ : w is of the form a b for n ≥ 0g ∗ 0 { Lprime = fw 2 Σ : w has a prime number of a sg { Deterministic finite state automata define languages that require finite resources (states) to recognize. Ashutosh Trivedi { 2 of 21 Ashutosh Trivedi Lecture 3: Regular Expressions What are Regular Languages? { An alphabet Σ = fa; b; cg is a finite set of letters, { The set of all strings (aka, words) Σ∗ over an alphabet Σ can be recursively defined as: as : { Base case: " 2 Σ∗ (empty string), { Induction: If w 2 Σ∗ then wa 2 Σ∗ for all a 2 Σ.
    [Show full text]
  • 10 Patterns, Automata, and Regular Expressions
    CHAPTER 10 Patterns, Automata, ✦ ✦ ✦ ✦ and Regular Expressions A pattern is a set of objects with some recognizable property. One type of pattern is a set of character strings, such as the set of legal C identifiers, each of which is a string of letters, digits, and underscores, beginning with a letter or underscore. Another example would be the set of arrays of 0’s and 1’s of a given size that a character reader might interpret as representing the same symbol. Figure 10.1 shows three 7 × 7-arrays that might be interpreted as letter A’s. The set of all such arrays would constitute the pattern called “A.” 0001000 0000000 0001000 0011100 0010000 0010100 0010100 0011000 0110100 0110110 0101000 0111110 0111110 0111000 1100011 1100011 1001100 1000001 1000001 1000100 0000000 Fig. 10.1. Three instances of the pattern “A.” The two fundamental problems associated with patterns are their definition and their recognition, subjects of this and the next chapter. Recognizing patterns is an integral part of tasks such as optical character recognition, an example of which was suggested by Fig. 10.1. In some applications, pattern recognition is a component of a larger problem. For example, recognizing patterns in programs is an essential part of compiling — that is, the translation of programs from one language, such as C, into another, such as machine language. There are many other examples of pattern use in computer science. Patterns play a key role in the design of the electronic circuits used to build computers and other digital devices. They are used in text editors to allow us to search for instances of specific words or sets of character strings, such as “the letters if followed by any sequence of characters followed by then.” Most operating systems allow us to use 529 530 PATTERNS, AUTOMATA, AND REGULAR EXPRESSIONS patterns in commands; for example, the UNIX command “ls *tex” lists all files whose names end with the three-character sequence “tex”.
    [Show full text]
  • Regular Expressions for Perl, C, PHP, Python, Java, and .NET
    Regular Expressions for Perl, C, PHP, Python, Java, and .NET Regular Expression Pocket Reference Tony Stubblebine Regular Expression Pocket Reference Regular Expression Pocket Reference Tony Stubblebine Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo PHP This reference covers PHP 4.3’s Perl-style regular expression support contained within the preg routines. PHP also pro- vides POSIX-style regular expressions, but these do not offer additional benefit in power or speed. The preg routines use a Traditional NFA match engine. For an explanation of the rules behind an NFA engine, see “Introduction to Regexes and Pattern Matching.” Supported Metacharacters PHP supports the metacharacters and metasequences listed in Tables 31 through 35. For expanded definitions of each metacharacter, see “Regex Metacharacters, Modes, and Constructs.” Table 31. Character representations Sequence Meaning \a Alert (bell), x07. \b Backspace, x08, supported only in character class. \e ESC character, x1B. \n Newline, x0A. \r Carriage return, x0D. \f Form feed, x0C. \t Horizontal tab, x09 \octal Character specified by a three-digit octal code. \xhex Character specified by a one- or two-digit hexadecimal code. \x{hex} Character specified by any hexadecimal code. \cchar Named control character. Table 32. Character classes and class-like constructs Class Meaning [...] A single character listed or contained within a listed range. PHP | 63 Table 32. Character classes and class-like constructs Class Meaning [^...] A single character not listed and not contained within a listed range. [:class:] POSIX-style character class valid only within a regex character class. Any character except newline (unless single-line mode,/s). \C One byte; however, this may corrupt a Unicode character stream.
    [Show full text]