Regular Expressions and Pattern Matching [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Regular Expressions and Pattern Matching James.Wasmuth@Ed.Ac.Uk Regular Expressions and Pattern Matching [email protected] Regular Expression (regex): a separate language, allowing the construction of patterns. used in most programming languages. very powerful in Perl. Pattern Match: using regex to search data and look for a match. Overview: how to create regular expressions how to use them to match and extract data biological context So Why Regex? Parse files of data and information: fasta embl / genbank format html (web-pages) user input to programs Check format Find illegal characters (validation) Search for sequences motifs Simple Patterns place regex between pair of forward slashes (/ /). try: #!/usr/bin/perl while (<STDIN>) { if (/abc/) { print “1 >> $_”; } } Run the script. Type in something that contains abc: abcfoobar Type in something that doesn't: fgh cba foobar ab c foobar print statement is returned if abc is matched within the typed input. Simple Patterns (2) Can also match strings from files. genomes_desc.txt contains a few text lines containing information about three genomes. try: #!/usr/bin/perl open IN, “<genomes_desc.txt”; while (<IN>) { if (/elegans/) { #match lines with this regex print; #print lines with match } } Parses each line in turn. Looks for elegans anywhere in line $_ Flexible matching There are many characters with special meanings – metacharacters. star (*) matches any number of instances /ab*c/ => 'a' followed by zero or more 'b' followed by 'c' => abc or abbbbbbbc or ac plus (+) matches at least one instance /ab+c/ => 'a' followed by one or more 'b' followed by 'c' => abc or abbc or abbbbbbbbbbbbbbc NOT ac question mark (?) matches zero or one instance /ab?c/ => 'a' followed by 0 or 1 'b' followed by 'c' => abc or ac More General Quantifiers Match a character a specific number or range of instances {x} will match x number of instances. /ab{3}c/ => abbbc {x,y} will match between x and y instances. /a{2,4}bc/ => aabc or aaabc or aaaabc {x,} will match x+ instances. /abc{3,}/ => abccc or abccccccccc or abcccccccccccccccccccccccccccccccccccccccccccccc cccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccc More metacharacters dot (.) refers to any character even tab (\t) and space but not newline (\n). /a.*c/ => 'a' followed by any number of any characters followed by 'c' Escaping But I want to use these symbols in my regex!?! to use a * , + , ? or . in the pattern when not a metacharacter, need to 'escape' them with a backslash. /C\. elegans/ => C. elegans only /C. elegans/ => Ca , Cb , C3 , C> , C. , etc... The 'delimitor' of the regex, forward slash “/”, and the 'escape' character, backslash “\”, are also metacharacters. These need to be escaped if required in regex. Important when trying to match URLs and email addresses. /joe\.bloggs\@darwin\.co\.uk/ /www\.envgen\.nox\.ac\.uk\/biolinux\.html/ Using metacharacters. The file nemaglobins.embl contains 21 embl database files that contain a globin protein within their sequence. try: #!/usr/bin/perl $count; open IN, “<nemaglobins.embl” or die; while (<IN>) { if (/AC .*/) { #that's three spaces print; $count++; } } print “total=$count\n”; Grouping Patterns Can group patterns in parentheses “()”. Useful when coupled with quantifiers /elegans+/ => eleganssssssssssssss /(elegans)+/ => eleganselegans...elegans 1 2 n /eleg(ans){4}/ => elegansansansans 1 2 3 4 Alternatives Want either this pattern or that pattern. Two ways: 1.) the vertical bar '|' either the left side matches or the right side matches /(human|mouse|rat)/ => any string with human or mouse or rat. Combine with previous examples: /Fugu( |\t)+rubripes/ matches if Fugu and rubripes are seperated by any mixture of spaces and tabs 2.) character class is a list of characters within '[]'. It will match any single character within the class. /[wxyz1234\t]/ => any of the nine. a range can be specified with '-' /[w-z1-4\t]/ => as above to match a hyphen it must be first in the class /[-a-zA-Z]/ => any letter character and a hyphen negating a character with '^' /[^z]/ => any character except z /[^abc]/ => any character except a or b or c Other Shortcuts \d => any digit [0-9] \w => any “word” character [A-Za-z0-9_] \s => any white space [\t\n\r\f ] \D => any character except a digit [^\d] \W => any character except a “word” character [^\w] \S => any character except a white space [^\s] Can use any of these in conjunction with quantifiers, /\s*/ => any amount of white space Using alternatives to find a hydrophobic region... try: open IN, "< nippo_sigpept.fsa" or die; while (<IN>) { if (/>/) { #a header line $count++; #keep running total of sequence number } else { #not a header if (/[VILMFWCA]{8,}/) { $match++; } } } print "Hydrophobic region found in $match sequences from $count\n"; Could also have used /(V|I|L|M|F|W|C|A){8,}/ Binding Operator Revisited? So far matching against $_ The binding operator “=~”matches the pattern on right against the string on left. Usually add the m operator (optional). $sumthing = 'Ascaris suum is a nematode'; if ($sumthing=~m/suum.*nematode/) { print “this organism infects pigs!\n”; } Anchors /pattern/ will match anywhere in the string. Use anchors to hold pattern to a point in the string. caret “^” (shift 6) marks the beginning of string while dollar “$” marks end of a string. /^elegans/ => elegans only at start of string. Not C. elegans. /Canis$/ => Canis only at end of string. Not Canis lupus. /^\s*$/ => a blank line. “$” ignores new line character “\n”. N.B. compare use of “^” as an anchor with that in the character class. Anchors (2) Word Boundary \b matches the start or end of a word. /\bmus\b/ would match mus but not musculus /la\b/ => Drosophila but not Plasmodium /\btes/ => Comamonas testosteroni but not Pan troglodytes \b ignores newline character. Be careful with full stops they're characters too! Memory Variables Able to extract sections of the pattern match and store in a variable. Anything stored in parentheses “()” is written into a special variable. The first instance is $1, the second $2, the fourth $4 and so on. Extract from file: Organism: Homo sapiens ... Extract from Perl script: while ($line=<IN>) { if ($line=~m/Organism:\s(\w)+\s(\w)+/) { $genus=$1; #stores Homo $species=$2; #stores sapiens } } Substitutions Able to replace a pattern within a string with another string. Use the “s” operator s/abc/xyz/ => find abc and replace with xyz By default only the first instance of a match. Using 'g' modifier (global) will find and replace all instances. $line = 'abccdcbabc'; $line =~ s/abc/xyz/g; print $line; #produces xyzcdcbxyz; 1 2 Run dna2rna.pl Now look at dna2rna.pl dna2rna.pl #!/usr/bin/perl print "Enter DNA sequence\n"; while ($line = <STDIN>) { chomp $line; #remove trailing \n if ($line=~m/[^AGCT]/i){ #case insensitive infered by 'i' #modifier print "your sequence contained an invalid nucleotide: $&\nPlease try again\n"; #'$&' is a special variable which stores what the #regular expression matched. Don't worry about it for now. } else { $line=~s/t/u/g; #replace all lower case 't' $line=~s/T/U/g; #replace all upper case 'T' print "The RNA sequence is:\n$line\n"; print “Try again or ctrl C to quit\n”; } } EMBL file revisited using shortcuts and anchors to help make more robust: if (/AC .*/) { #that's three spaces can be rewritten as; if (/^AC\s{3}(.*)\n$/){ #more certain to return what you want $accession=$1; #now have info stored to use later. } Now Its Your Turn :o) nemaglobins.embl contains entries for complete cds of nematode sequences. Foreach entry print the ACcession, OrganiSm name and AGCT content of the SeQuence. Output should read: Accession: AC00000 <tab> Species: Toxocara canis <newline> A: 34 G: 65 C: 24 T: 75 <newline><newline> Hints: The lines of interest are AC, OS, and SQ. Three regular expressions - one for each query. Use a series of if and elsif loops to search for regular expressions. Print when matched. Bonus point - remove the semi-colon from the accession id. Shout if need help..
Recommended publications
  • Pattern Matching Using Similarity Measures
    Pattern matching using similarity measures Patroonvergelijking met behulp van gelijkenismaten (met een samenvatting in het Nederlands) PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van Rector Magnificus, Prof. Dr. H. O. Voorma, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op maandag 18 september 2000 des morgens te 10:30 uur door Michiel Hagedoorn geboren op 13 juli 1972, te Renkum promotor: Prof. Dr. M. H. Overmars Faculteit Wiskunde & Informatica co-promotor: Dr. R. C. Veltkamp Faculteit Wiskunde & Informatica ISBN 90-393-2460-3 PHILIPS '$ The&&% research% described in this thesis has been made possible by financial support from Philips Research Laboratories. The work in this thesis has been carried out in the graduate school ASCI. Contents 1 Introduction 1 1.1Patternmatching.......................... 1 1.2Applications............................. 4 1.3Obtaininggeometricpatterns................... 7 1.4 Paradigms in geometric pattern matching . 8 1.5Similaritymeasurebasedpatternmatching........... 11 1.6Overviewofthisthesis....................... 16 2 A theory of similarity measures 21 2.1Pseudometricspaces........................ 22 2.2Pseudometricpatternspaces................... 30 2.3Embeddingpatternsinafunctionspace............. 40 2.4TheHausdorffmetric........................ 46 2.5Thevolumeofsymmetricdifference............... 54 2.6 Reflection visibility based distances . 60 2.7Summary.............................. 71 2.8Experimentalresults.......................
    [Show full text]
  • Pattern Matching Using Fuzzy Methods David Bell and Lynn Palmer, State of California: Genetic Disease Branch
    Pattern Matching Using Fuzzy Methods David Bell and Lynn Palmer, State of California: Genetic Disease Branch ABSTRACT The formula is : Two major methods of detecting similarities Euclidean Distance and 2 a "fuzzy Hamming distance" presented in a paper entitled "F %%y Dij : ; ( <3/i - yj 4 Hamming Distance: A New Dissimilarity Measure" by Bookstein, Klein, and Raita, will be compared using entropy calculations to Euclidean distance is especially useful for comparing determine their abilities to detect patterns in data and match data matching whole word object elements of 2 vectors. The records. .e find that both means of measuring distance are useful code in Java is: depending on the context. .hile fuzzy Hamming distance outperforms in supervised learning situations such as searches, the Listing 1: Euclidean Distance Euclidean distance measure is more useful in unsupervised pattern matching and clustering of data. /** * EuclideanDistance.java INTRODUCTION * * Pattern matching is becoming more of a necessity given the needs for * Created: Fri Oct 07 08:46:40 2002 such methods for detecting similarities in records, epidemiological * * @author David Bell: DHS-GENETICS patterns, genetics and even in the emerging fields of criminal * @version 1.0 behavioral pattern analysis and disease outbreak analysis due to */ possible terrorist activity. 0nfortunately, traditional methods for /** Abstact Distance class linking or matching records, data fields, etc. rely on exact data * @param None matches rather than looking for close matches or patterns. 1f course * @return Distance Template proximity pattern matches are often necessary when dealing with **/ messy data, data that has inexact values and/or data with missing key abstract class distance{ values.
    [Show full text]
  • Use Perl Regular Expressions in SAS® Shuguang Zhang, WRDS, Philadelphia, PA
    NESUG 2007 Programming Beyond the Basics Use Perl Regular Expressions in SAS® Shuguang Zhang, WRDS, Philadelphia, PA ABSTRACT Regular Expression (Regexp) enhance search and replace operations on text. In SAS®, the INDEX, SCAN and SUBSTR functions along with concatenation (||) can be used for simple search and replace operations on static text. These functions lack flexibility and make searching dynamic text difficult, and involve more function calls. Regexp combines most, if not all, of these steps into one expression. This makes code less error prone, easier to maintain, clearer, and can improve performance. This paper will discuss three ways to use Perl Regular Expression in SAS: 1. Use SAS PRX functions; 2. Use Perl Regular Expression with filename statement through a PIPE such as ‘Filename fileref PIPE 'Perl programm'; 3. Use an X command such as ‘X Perl_program’; Three typical uses of regular expressions will also be discussed and example(s) will be presented for each: 1. Test for a pattern of characters within a string; 2. Replace text; 3. Extract a substring. INTRODUCTION Perl is short for “Practical Extraction and Report Language". Larry Wall Created Perl in mid-1980s when he was trying to produce some reports from a Usenet-Nes-like hierarchy of files. Perl tries to fill the gap between low-level programming and high-level programming and it is easy, nearly unlimited, and fast. A regular expression, often called a pattern in Perl, is a template that either matches or does not match a given string. That is, there are an infinite number of possible text strings.
    [Show full text]
  • Lecture 18: Theory of Computation Regular Expressions and Dfas
    Introduction to Theoretical CS Lecture 18: Theory of Computation Two fundamental questions. ! What can a computer do? ! What can a computer do with limited resources? General approach. Pentium IV running Linux kernel 2.4.22 ! Don't talk about specific machines or problems. ! Consider minimal abstract machines. ! Consider general classes of problems. COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126 2 Why Learn Theory In theory . Regular Expressions and DFAs ! Deeper understanding of what is a computer and computing. ! Foundation of all modern computers. ! Pure science. ! Philosophical implications. a* | (a*ba*ba*ba*)* In practice . ! Web search: theory of pattern matching. ! Sequential circuits: theory of finite state automata. a a a ! Compilers: theory of context free grammars. b b ! Cryptography: theory of computational complexity. 0 1 2 ! Data compression: theory of information. b "In theory there is no difference between theory and practice. In practice there is." -Yogi Berra 3 4 Pattern Matching Applications Regular Expressions: Basic Operations Test if a string matches some pattern. Regular expression. Notation to specify a set of strings. ! Process natural language. ! Scan for virus signatures. ! Search for information using Google. Operation Regular Expression Yes No ! Access information in digital libraries. ! Retrieve information from Lexis/Nexis. Concatenation aabaab aabaab every other string ! Search-and-replace in a word processors. cumulus succubus Wildcard .u.u.u. ! Filter text (spam, NetNanny, Carnivore, malware). jugulum tumultuous ! Validate data-entry fields (dates, email, URL, credit card). aa Union aa | baab baab every other string ! Search for markers in human genome using PROSITE patterns. aa ab Closure ab*a abbba ababa Parse text files.
    [Show full text]
  • CSCI 2041: Pattern Matching Basics
    CSCI 2041: Pattern Matching Basics Chris Kauffman Last Updated: Fri Sep 28 08:52:58 CDT 2018 1 Logistics Reading Assignment 2 I OCaml System Manual: Ch I Demo in lecture 1.4 - 1.5 I Post today/tomorrow I Practical OCaml: Ch 4 Next Week Goals I Mon: Review I Code patterns I Wed: Exam 1 I Pattern Matching I Fri: Lecture 2 Consider: Summing Adjacent Elements 1 (* match_basics.ml: basic demo of pattern matching *) 2 3 (* Create a list comprised of the sum of adjacent pairs of 4 elements in list. The last element in an odd-length list is 5 part of the return as is. *) 6 let rec sum_adj_ie list = 7 if list = [] then (* CASE of empty list *) 8 [] (* base case *) 9 else 10 let a = List.hd list in (* DESTRUCTURE list *) 11 let atail = List.tl list in (* bind names *) 12 if atail = [] then (* CASE of 1 elem left *) 13 [a] (* base case *) 14 else (* CASE of 2 or more elems left *) 15 let b = List.hd atail in (* destructure list *) 16 let tail = List.tl atail in (* bind names *) 17 (a+b) :: (sum_adj_ie tail) (* recursive case *) The above function follows a common paradigm: I Select between Cases during a computation I Cases are based on structure of data I Data is Destructured to bind names to parts of it 3 Pattern Matching in Programming Languages I Pattern Matching as a programming language feature checks that data matches a certain structure the executes if so I Can take many forms such as processing lines of input files that match a regular expression I Pattern Matching in OCaml/ML combines I Case analysis: does the data match a certain structure I Destructure Binding: bind names to parts of the data I Pattern Matching gives OCaml/ML a certain "cool" factor I Associated with the match/with syntax as follows match something with | pattern1 -> result1 (* pattern1 gives result1 *) | pattern2 -> (* pattern 2..
    [Show full text]
  • Perl Regular Expressions Tip Sheet Functions and Call Routines
    – Perl Regular Expressions Tip Sheet Functions and Call Routines Basic Syntax Advanced Syntax regex-id = prxparse(perl-regex) Character Behavior Character Behavior Compile Perl regular expression perl-regex and /…/ Starting and ending regex delimiters non-meta Match character return regex-id to be used by other PRX functions. | Alternation character () Grouping {}[]()^ Metacharacters, to match these pos = prxmatch(regex-id | perl-regex, source) $.|*+?\ characters, override (escape) with \ Search in source and return position of match or zero Wildcards/Character Class Shorthands \ Override (escape) next metacharacter if no match is found. Character Behavior \n Match capture buffer n Match any one character . (?:…) Non-capturing group new-string = prxchange(regex-id | perl-regex, times, \w Match a word character (alphanumeric old-string) plus "_") Lazy Repetition Factors Search and replace times number of times in old- \W Match a non-word character (match minimum number of times possible) string and return modified string in new-string. \s Match a whitespace character Character Behavior \S Match a non-whitespace character *? Match 0 or more times call prxchange(regex-id, times, old-string, new- \d Match a digit character +? Match 1 or more times string, res-length, trunc-value, num-of-changes) Match a non-digit character ?? Match 0 or 1 time Same as prior example and place length of result in \D {n}? Match exactly n times res-length, if result is too long to fit into new-string, Character Classes Match at least n times trunc-value is set to 1, and the number of changes is {n,}? Character Behavior Match at least n but not more than m placed in num-of-changes.
    [Show full text]
  • Compiling Pattern Matching to Good Decision Trees
    Submitted to ML’08 Compiling Pattern Matching to good Decision Trees Luc Maranget INRIA Luc.marangetinria.fr Abstract In this paper we study compilation to decision tree, whose We address the issue of compiling ML pattern matching to efficient primary advantage is never testing a given subterm of the subject decisions trees. Traditionally, compilation to decision trees is op- value more than once (and whose primary drawback is potential timized by (1) implementing decision trees as dags with maximal code size explosion). Our aim is to refine naive compilation to sharing; (2) guiding a simple compiler with heuristics. We first de- decision trees, and to compare the output of such an optimizing sign new heuristics that are inspired by necessity, a notion from compiler with optimized backtracking automata. lazy pattern matching that we rephrase in terms of decision tree se- Compilation to decision can be very sensitive to the testing mantics. Thereby, we simplify previous semantical frameworks and order of subject value subterms. The situation can be explained demonstrate a direct connection between necessity and decision by the example of an human programmer attempting to translate a ML program into a lower-level language without pattern matching. tree runtime efficiency. We complete our study by experiments, 1 showing that optimized compilation to decision trees is competi- Let f be the following function defined on triples of booleans : tive. We also suggest some heuristics precisely. l e t f x y z = match x,y,z with | _,F,T -> 1 Categories and Subject Descriptors D 3. 3 [Programming Lan- | F,T,_ -> 2 guages]: Language Constructs and Features—Patterns | _,_,F -> 3 | _,_,T -> 4 General Terms Design, Performance, Sequentiality.
    [Show full text]
  • Combinatorial Pattern Matching
    Combinatorial Pattern Matching 1 A Recurring Problem Finding patterns within sequences Variants on this idea Finding repeated motifs amoungst a set of strings What are the most frequent k-mers How many time does a specific k-mer appear Fundamental problem: Pattern Matching Find all positions of a particular substring in given sequence? 2 Pattern Matching Goal: Find all occurrences of a pattern in a text Input: Pattern p = p1, p2, … pn and text t = t1, t2, … tm Output: All positions 1 < i < (m – n + 1) such that the n-letter substring of t starting at i matches p def bruteForcePatternMatching(p, t): locations = [] for i in xrange(0, len(t)-len(p)+1): if t[i:i+len(p)] == p: locations.append(i) return locations print bruteForcePatternMatching("ssi", "imissmissmississippi") [11, 14] 3 Pattern Matching Performance Performance: m - length of the text t n - the length of the pattern p Search Loop - executed O(m) times Comparison - O(n) symbols compared Total cost - O(mn) per pattern In practice, most comparisons terminate early Worst-case: p = "AAAT" t = "AAAAAAAAAAAAAAAAAAAAAAAT" 4 We can do better! If we preprocess our pattern we can search more effciently (O(n)) Example: imissmissmississippi 1. s 2. s 3. s 4. SSi 5. s 6. SSi 7. s 8. SSI - match at 11 9. SSI - match at 14 10. s 11. s 12. s At steps 4 and 6 after finding the mismatch i ≠ m we can skip over all positions tested because we know that the suffix "sm" is not a prefix of our pattern "ssi" Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAT" by recognizing the shared prefixes ("AAA" in "AAAA").
    [Show full text]
  • Unicode Regular Expressions Technical Reports
    7/1/2019 UTS #18: Unicode Regular Expressions Technical Reports Working Draft for Proposed Update Unicode® Technical Standard #18 UNICODE REGULAR EXPRESSIONS Version 20 Editors Mark Davis, Andy Heninger Date 2019-07-01 This Version http://www.unicode.org/reports/tr18/tr18-20.html Previous Version http://www.unicode.org/reports/tr18/tr18-19.html Latest Version http://www.unicode.org/reports/tr18/ Latest Proposed http://www.unicode.org/reports/tr18/proposed.html Update Revision 20 Summary This document describes guidelines for how to adapt regular expression engines to use Unicode. Status This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in progress. A Unicode Technical Standard (UTS) is an independent specification. Conformance to the Unicode Standard does not imply conformance to any UTS. Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this document is found in the References. For the latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more information about versions of the Unicode Standard, see [Versions]. Contents 0 Introduction 0.1 Notation 0.2 Conformance 1 Basic Unicode Support: Level 1 1.1 Hex Notation 1.1.1 Hex Notation and Normalization 1.2 Properties 1.2.1 General
    [Show full text]
  • Regular Expressions with a Brief Intro to FSM
    Regular Expressions with a brief intro to FSM 15-123 Systems Skills in C and Unix Case for regular expressions • Many web applications require pattern matching – look for <a href> tag for links – Token search • A regular expression – A pattern that defines a class of strings – Special syntax used to represent the class • Eg; *.c - any pattern that ends with .c Formal Languages • Formal language consists of – An alphabet – Formal grammar • Formal grammar defines – Strings that belong to language • Formal languages with formal semantics generates rules for semantic specifications of programming languages Automaton • An automaton ( or automata in plural) is a machine that can recognize valid strings generated by a formal language . • A finite automata is a mathematical model of a finite state machine (FSM), an abstract model under which all modern computers are built. Automaton • A FSM is a machine that consists of a set of finite states and a transition table. • The FSM can be in any one of the states and can transit from one state to another based on a series of rules given by a transition function. Example What does this machine represents? Describe the kind of strings it will accept. Exercise • Draw a FSM that accepts any string with even number of A’s. Assume the alphabet is {A,B} Build a FSM • Stream: “I love cats and more cats and big cats ” • Pattern: “cat” Regular Expressions Regex versus FSM • A regular expressions and FSM’s are equivalent concepts. • Regular expression is a pattern that can be recognized by a FSM. • Regex is an example of how good theory leads to good programs Regular Expression • regex defines a class of patterns – Patterns that ends with a “*” • Regex utilities in unix – grep , awk , sed • Applications – Pattern matching (DNA) – Web searches Regex Engine • A software that can process a string to find regex matches.
    [Show full text]
  • Regular Expressions
    CS 172: Computability and Complexity Regular Expressions Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum The Picture So Far DFA NFA Regular language S. A. Seshia 2 Today’s Lecture DFA NFA Regular Regular language expression S. A. Seshia 3 Regular Expressions • What is a regular expression? S. A. Seshia 4 Regular Expressions • Q. What is a regular expression? • A. It’s a “textual”/ “algebraic” representation of a regular language – A DFA can be viewed as a “pictorial” / “explicit” representation • We will prove that a regular expressions (regexps) indeed represent regular languages S. A. Seshia 5 Regular Expressions: Definition σ is a regular expression representing { σσσ} ( σσσ ∈∈∈ ΣΣΣ ) ε is a regular expression representing { ε} ∅ is a regular expression representing ∅∅∅ If R 1 and R 2 are regular expressions representing L 1 and L 2 then: (R 1R2) represents L 1⋅⋅⋅L2 (R 1 ∪∪∪ R2) represents L 1 ∪∪∪ L2 (R 1)* represents L 1* S. A. Seshia 6 Operator Precedence 1. *** 2. ( often left out; ⋅⋅⋅ a ··· b ab ) 3. ∪∪∪ S. A. Seshia 7 Example of Precedence R1*R 2 ∪∪∪ R3 = ( ())R1* R2 ∪∪∪ R3 S. A. Seshia 8 What’s the regexp? { w | w has exactly a single 1 } 0*10* S. A. Seshia 9 What language does ∅∅∅* represent? {ε} S. A. Seshia 10 What’s the regexp? { w | w has length ≥ 3 and its 3rd symbol is 0 } ΣΣΣ2 0 ΣΣΣ* Σ = (0 ∪∪∪ 1) S. A. Seshia 11 Some Identities Let R, S, T be regular expressions • R ∪∪∪∅∅∅ = ? • R ···∅∅∅ = ? • Prove: R ( S ∪∪∪ T ) = R S ∪∪∪ R T (what’s the proof idea?) S.
    [Show full text]
  • Context-Free Grammar for the Syntax of Regular Expression Over the ASCII
    Context-free Grammar for the syntax of regular expression over the ASCII character set assumption : • A regular expression is to be interpreted a Haskell string, then is used to match against a Haskell string. Therefore, each regexp is enclosed inside a pair of double quotes, just like any Haskell string. For clarity, a regexp is highlighted and a “Haskell input string” is quoted for the examples in this document. • Since ASCII character strings will be encoded as in Haskell, therefore special control ASCII characters such as NUL and DEL are handled by Haskell. context-free grammar : BNF notation is used to describe the syntax of regular expressions defined in this document, with the following basic rules: • <nonterminal> ::= choice1 | choice2 | ... • Double quotes are used when necessary to reflect the literal meaning of the content itself. <regexp> ::= <union> | <concat> <union> ::= <regexp> "|" <concat> <concat> ::= <term><concat> | <term> <term> ::= <star> | <element> <star> ::= <element>* <element> ::= <group> | <char> | <emptySet> | <emptyStr> <group> ::= (<regexp>) <char> ::= <alphanum> | <symbol> | <white> <alphanum> ::= A | B | C | ... | Z | a | b | c | ... | z | 0 | 1 | 2 | ... | 9 <symbol> ::= ! | " | # | $ | % | & | ' | + | , | - | . | / | : | ; | < | = | > | ? | @ | [ | ] | ^ | _ | ` | { | } | ~ | <sp> | \<metachar> <sp> ::= " " <metachar> ::= \ | "|" | ( | ) | * | <white> <white> ::= <tab> | <vtab> | <nline> <tab> ::= \t <vtab> ::= \v <nline> ::= \n <emptySet> ::= Ø <emptyStr> ::= "" Explanations : 1. Definition of <metachar> in our definition of regexp: Symbol meaning \ Used to escape a metacharacter, \* means the star char itself | Specifies alternatives, y|n|m means y OR n OR m (...) Used for grouping, giving the group priority * Used to indicate zero or more of a regexp, a* matches the empty string, “a”, “aa”, “aaa” and so on Whi tespace char meaning \n A new line character \t A horizontal tab character \v A vertical tab character 2.
    [Show full text]