S. Acar, K. Natcheva-Acar A guide on the implementation of the Heath-Jarrow-Morton Two- Factor Gaussian Short Rate Model (HJM-G2++)

Berichte des Fraunhofer ITWM, Nr. 170 (2009) © Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2009

ISSN 1434-9973

Bericht 170 (2009)

Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in ­irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Datenverarbei­tungsanlagen, ver- wendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM Fraunhofer-Platz 1

67663 Kaiserslautern Germany

Telefon: +49 (0) 6 31/3 16 00-0 Telefax: +49 (0) 6 31/3 16 00-10 99 E-Mail: [email protected] Internet: www.itwm.fraunhofer.de Vorwort

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech- no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinu- ierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathema- tik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit inter- nationalen Institutionen und Hochschulen in den Bereichen Ausbildung und For- schung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Bericht- reihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Dissertati- onen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahl- reichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirt- schaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen und Softwareprodukte – und umgekehrt, denn Probleme der Praxis generieren neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters Institutsleiter

Kaiserslautern, im Juni 2001

A Guide on the Implementation of the Heath-Jarrow-Morton Two-Factor Gaussian Short Rate Model (HJM-G2++)

Dr. Sarp Kaya Acar, Dr. Kalina Natcheva-Acar

July 23, 2009

Kaiserslautern, Germany Contents

Contents

1 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM- G2++) 2

1.1 Motivation...... 2

1.2 DefinitionoftheHJM-G2++model ...... 2

1.3 Closedformsolutions...... 4

1.3.1 ThepriceofaEuropeanoptiononazero-couponbond ...... 6

1.3.2 Thepriceofacaplet ...... 6

1.3.3 Thepriceofaswaption...... 7

1.3.4 Implementation of the swaption semi closed-form formula ...... 12

1.4 Degenerationtoaone-factormodel ...... 13

2 Numerical implementation 15

2.1 MonteCarlosimulation...... 15

2.2 Treeconstruction ...... 16

3 Calibration to market data 20

4 Conclusion 25

5 Appendix 26

1 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

1 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

1.1 Motivation

In the literature, there are at least two equivalent two-factor Gaussian models for the instantaneous short rate. These are the original two-factor Hull White model (see [3]) and the G2++ one by Brigo and Mercurio (see [1]). Both these models first specify a time homogeneous two-factor short rate dynamics and then by adding a deterministic shift function ϕ( ) fit exactly the initial term structure of interest rates. However, the obtained results are rather· clumsy and not intuitive which means that a special care has to be taken for their correct numerical implementation.

On the other side, as noticed by Heath-Jarrow-Morton (1992) (HJM), virtually any exogenous short rate model can be derived within the HJM framework by choosing the class of the forward rate volatilities. By starting within the HJM framework and limiting the volatility of the forward rate to a deterministic, exponentially decaying one, we derive another two-factor Gaussian short rate model which has a very simple and intuitive form. Moreover, no fitting to the initial term structure is required as this is contained in the model by its construction. Additionally, the dynamics of the underlying factors under the forward risk-neutral measure is a very simple one, which facilitates the derivation of closed-form solutions. We call the offered construction HJM-G2++ model due to its similarity to the G2++ model of Brigo and Mercuirio.

In this report, we investigate the offered HJM-G2++ model and derive closed-form solutions to the standard options needed for calibration purposes (caps, floors, bond options and swaptions). Further, we calibrate the model parameters to at-the-monety (ATM) Caps market volatilities and ATM swaption volatility surfaces and make comments on the ability of the model to fit real market data.

Finally, we deal with different methods for the numerical implementation of HJM-G2++ for pricing complex claims with no closed-form solution. For that purpose, we offer a Monte Carlo simulation scheme and a lattice approximation with a construction similar to the one of Li, Ritchken and Sankarasubramanian [4] (for the Cheyette model [2]).

1.2 Definition of the HJM-G2++ model

Let us assume that the instantaneous forward rate follows a two-factor HJM model and its volatility is deterministic and given by

κ1(T t) κ2(T t) σ(t, T ) = σ1e− − + σ2e− −

2 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

+ + with ki R , σi R , i = 1, 2. The forward rate equation for the so-defined volatility can be witten∈ as ∈

2 2 κi(T t) f(t, T ) = f(0,T ) + e− − Xi(t) + bk(t, T )Zik(0, t) (1) i " k # X=1 X=1 for

κ1(T t) 1 e− − b1(t, T ) = − , κ1 = 0 κ1 6 b (t, T ) = T t, κ = 0; 1 − 1 κ2(T t) 1 e− − b2(t, T ) = − , κ2 = 0 κ2 6 b (t, T ) = T t, κ = 0; 2 − 2 and cumulative quadrative variation that is defined as

t t σ2 e 2κ1(t u) 2 2κ1(t s) 1(1 − − ) Z11(u, t) = cov(X1(s),X1(s))ds = σ1e− − ds = − u u 2κ1 Z t Z Z12(u, t) = cov(X1(s),X2(s))ds u Z t (κ1+κ2)(t s) = Z21(u, t) = ρ1,2 σ1σ2e− − ds u ρσ σ Z 1 2 (κ1+κ2)(t u) = 1 e− − κ1 + κ2 −   t t σ2 e κ2(t u) 2 2κ2(t s) 2(1 − − ) Z (u, t) = cov(X (s),X (s))ds = σ e− − ds = − 22 2 2 2 2κ Zu Zu 2 Using r(t) = f(t, t) we can find from (1) the short rate to be

r(t) = f(0, t) + X1(t) + X2(t) (2)

where following Cheyette’s model (see [2]) the state variables X1(t) and X2(t) are respectively defined under an Equivalent Martingale Measure Q as

2 Q dX (t) = κ X (t) + Z ,k(0, t) dt + σ dW˜ (t),X (0) = 0 (3) 1 − 1 1 1 1 1 1 k ! X=1 2 Q dX (t) = κ X (t) + Z ,k(0, t) dt + σ dW˜ (t),X (0) = 0 (4) 2 − 2 2 2 2 2 2 k ! X=1 ˜1 ˜2 with correlation d W , W t = ρdt. h i

3 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

The price of a zero coupon bond P (t, T ) at time t can easily be calculated using integration of the forward rate to be

T r(s)ds T f(t,u)du P (t, T ) = E e− Rt t = e− Rt |F P (0 ,T )  = exp b (t, T )X (t) b (t, T )X (t) 0P ( , t) − 1 1 − 2 2  2 1 bi(t, T )bj(t, T )Zij(0, t) . −2 i,j X=1 

1.3 Closed form solutions

Using the form of the analytical strong solution of a generalized linear stochastic differential equation, we can write for s t ≤ t t κi(t s) κi(u s) κi(u s) Xi(t) = e− − Xi(s) + Zi1(s, u)e − du + Zi2(s, u)e − du s s t  Z Z κi(u s) ˜ Q + σie − dWi (u) s Z t  t κi(t s) κi(t u) κi(t u) = Xi(s)e− − + Zi1(s, u)e− − du + Zi2(s, u)e− − du s s t Z Z κi(t u) ˜ Q + σie− − dWi (u) Zs In specific for i = 1 we have t t κ1(t s) κ1(t u) κ1(t u) X1(t) = X1(s)e− − + Z11(s, u)e− − du + Z12(s, u)e− − du s s t Z Z κ1(t u) ˜ Q + σ1e− − dW1 (u) Zs t σ2 κ1(t s) 1 2κ1(u s) κ1(t u) = X1(s)e− − + 1 e− − e− − du s 2κ1 − t Z   t ρ , σ σ 1 2 1 2 (κ1+κ2)(u s) κ1(t u) κ1(t u) ˜ Q + 1 e− − e− − du + σ1e− − dW1 (u) s κ1 + κ2 − s Z  2 Z 2 κ1(t s) σ 1 e− − = X (s)e κ1(t s) + 1 − 1 − − κ2 2 1  ρ σ σ 1,2 1 2 κ1(t s) (κ1+κ2)(t s) + κ2 (κ1 + κ2)e− − + κ1e− − (κ1 + κ2)κ1κ2 − t h i κ1(t u) ˜ Q + σ1e− − dW1 (u). Zs

4 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

Thus, we have for the short rate for s t ≤ r(t) = f(s, t) + X1(t) + X2(t) 2 2 σ2 1 e κ1(t s) σ2 1 e κ2(t s) κ1(t s) κ2(t s) 1 − − 2 − − = X (s)e− − + X (s)e− − + − + − 1 2 κ2 κ2 2 1  2 2  ρ σ σ 1,2 1 2 κ1(t s) κ2(t s) + 1 e− − 1 e− − κ1κ2 − − t    t  κ1(t u) ˜ Q κ2(t u) ˜ Q + σ1e− − dW1 (u) + σ2e− − dW2 (u) Zs Zs where

Q κ1(t s) κ2(t s) E r(t) Fs = f(s, t) + X (s)e− − + X (s)e− − | 1 2 σ2 2 σ2 2  1 κ1(t s) 2 κ2(t s) + 2 1 e− − + 2 1 e− − 2κ1 − 2κ2 − ρσ σ    1 2 κ1(t s) κ2(t s) + 1 e− − 1 e− − κ1κ2 − −     σ2 1 e 2κ1(t s) ρσ σ σ2 1 e 2κ2(t s) Q 1 − − 1 2 (κ1+κ2)(t s) 2 − − Var r(t) Fs = − + 2 1 e− − + − . | 2κ1  κ1 + κ2 − 2κ2     where we notice that the short rate process r(t) is conditionally Gaussian.

Denoting

2 2 σ 2 σ 2 Q F 1 κ1t 2 κ2t µr := E r(t) 0 = f(0, t) + 2 1 e− + 2 1 e− | 2κ1 − 2κ2 − ρσ σ  1 2 κ1t  κ2t  + 1 e− 1 e− κ1κ2 − − 2 2κ1t 2 2κ2t σ 1 e−  ρσ σ  σ 1 e− σ := VarQ r(t) F = 1 − + 2 1 2 1 e (κ1+κ2)t + 2 − r 0 κ κ κ − κ | 2 1  1 + 2 − 2 2    

and using that the short rate is normally distributed with mean µr and variance σr we can easily estimate the risk-neutral probability for the short rate to become negative to be

µr Q(r(t) < 0) = EQ 11 r(t)<0 = EQ 11 r(t)−µr µr = ϕ > 0 { } σ < σ −σ  r − r   r   where ϕ( ) denotes the cumulative distribution function of the standard normal distribution.· We remark here that although the upper probability is in most cases negligibly small, this is a definite drawback of the model.

Additionally, notice that the mean and the variance of the short rate in the HJM-G2++ and in the G2++ are the same (see [1], p.147) which means that the two models produce

5 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

equivalent dynamics of the short rate. This will be used later in the proof of the derivation of the closed-from solutions of caplets and bond options. However, the dynamics of the underlying factors X1(t) and X2(t) are slightly different which leads also to a slightly different closed-form solution for swaptions. For this reason, we will present in more details the derivation of the swaption formula.

1.3.1 The price of a European on a zero-coupon bond

Theorem 1.1. Using the already specified short rate dynamics, the price ZBC(t, T, S, K) at time t of a European zero-bond call option with maturity T > t and strike K on a zero-coupon bond with maturity S > T is calculated to

P (t,S) 1 2 ln KP,T (t ) + 2 Σp(t,T,S) ZBC(t, T, S, K) = P (t, S)Φ   Σ,T,Sp(t ) 

 P (t,S) 1  2 ln KP,T (t ) 2 Σp(t,T,S) P (t, T )K Φ − −   Σ,T,Sp(t )    where Φ( ) denotes the cumulative standard normal distribution function and · 2 2 2 Σp(t, T, S) := b1(T,S) Z11(t, T ) + b2(T,S) Z22(t, T ) + 2b1(T,S)b2(T,S)Z12(t, T ).

The price ZBP(t, T, S, K) of a European bond put option is given by

P (t,S) 1 2 ln KP,T (t ) + 2 Σp(t,T,S) ZBP(t, T, S, K) = P (t, S)Φ − −  Σ,T,Sp(t ) 

 P (t,S) 1 2 ln KP,T (t ) 2 Σp(t,T,S) +P (t, T )K Φ − . −  Σ,T,Sp(t )    Proof: Due to the equivalence of the distribution of the short rate process r(t) in the 2FHW and in the G2++ model, we refer for the proof to [1].

1.3.2 The price of a caplet

Theorem 1.2. Using the already specified short rate dynamics, the price Caplet(t, T, S, K) at time t of a caplet resetting at time T > t, with payoff at time S > T

6 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

and strike K is calculated to

∗ K P (t,T ) 1 2 ln P,S(t ) + 2 Σp(t,T,S) Caplet(t, T, S, K) = P (t, T )Φ   Σ,T,Sp(t ) 

∗  K P (t,T ) 1 2  1 ln P,S(t ) 2 Σp(t,T,S) P (t,S)Φ − −K∗   Σ,T,Sp(t )    with K = 1 , Φ( ) denoting the cumulative standard normal distribution function ∗ 1+K(S T ) · and −

2 2 2 Σp(t, T, S) := b1(T,S) Z11(t, T ) + b2(T,S) Z22(t, T ) + 2b1(T,S)b2(T,S)Z12(t, T ).

Proof: see [1].

1.3.3 The price of a swaption

Consider an European option giving the right at time t0 = T (maturity) to enter an interest rate swap with payment times = t1, . . . , tn (reset times t0, . . . , tn 1 ), fixed leg rate T { } { − } X and notional N. The year fraction from ti 1 to ti is denoted as usually by τi. Theorem 1.3. The arbitrage-free price at time− 0 of a European payer/receiver swaption is given by numerically computing the following one-dimensional integral

ESp(0,T, ,N,K) T − 2 1 x1 µx1 + 2 “ σ ” n e− x1 ∞ βi(x1) = NP (0,T ) Φ ( h (x )) λi(x )e Φ( h (x )) dx √ − 1 1 − 1 − 2 1 1 σx1 2π " i # Z−∞ X=1 (5)

and

ESr(0,T, ,N,K) T − 2 1 x1 µx1 + 2 “ σ ” n e− x1 ∞ βi(x1) = NP (0,T ) Φ (h (x )) λi(x )e Φ(h (x )) dx − √ 1 1 − 1 2 1 1 σx1 2π " i # Z−∞ X=1 (6)

7 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

where

x¯ µx ρx x (x µx ) h (x ) := 2 − 2 1 2 1 − 1 1 1 2 2 σx 1 ρ − σx 1 ρ 2 − x1x2 1 − x1x2 2 h (x ) := h (xp) + b (T, ti)σx p1 ρ 2 1 1 1 2 2 − x1x2 b1(T,ti)x1 q λi(x1) := ciA(T, ti)e−

1 2 2 x1 µx1 βi(x ) := b (T, ti) µx 1 ρ σ b (T, ti) + ρx x σx − 1 − 2 2 − 2 − x1x2 x2 2 1 2 2 σ  x1  ti 1 2 f(0,u)du bk(T,ti)bj (T,ti)Zkj(0,T ) A(T, ti) := e− RT − 2 Pk,j=1 .

and c := c , . . . , cn such that ci := Xτi for i = 1, . . . , n 1 and cn := 1 + Xτn. { 1 } −

In addition x¯2 =x ¯2(x1) is the unique solution of the following equation (found via numerical methods)

n b1(T,ti)x1 b2(T,ti)x2 ciA(T, ti)e− − = 1 (7) i X=1 and

µx1 = µx2 = 0 T 2 2 2κ1(T u) σx1 := σ1e− − du = Z11(0,T ) 0 Z T 2 2 2κ2(T u) σx2 := σ2e− − du = Z22(0,T ) Z0 T (κ1+κ2)(T u) ρ1,2 σ1σ2e− − du Z (0,T ) ρ := 0 = 12 x1x2 σ σ R x1 x2 Z11(0,T )Z22(0,T ) Proof: p We will consider only the case of a European payer swaption and the one for the receiver will follow by analogy.

By definition of the payer swaption, we can write its discounted until time zero payoff as

n T r(u)du + Ne− R0 P (T, ti)τi (F (T, ti 1, ti) X) − − i ! X=1 where the forward Libor rate is defined as

1 P (T, ti 1) P (T, ti) F (T, ti 1, ti) := − − , i = 1, . . . , n. − τ P (T,t ) i  i 

8 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

Using the definition of the forward Libor rate we can rewrite the payoff of the payer swaption as

n n n + T r(u)du Ne− R0 P (T, ti 1) P (T, ti) P (T, ti)τiX − − − i i i ! X=1 X=1 X=1 n + T r(u)du = Ne− R0 1 X τiP (T, ti) P (T, tn) − − i ! X=1 n + T r(u)du = Ne− R0 1 ciP (T, ti) . − i ! X=1 Taking expectation under the forward QT measure we obtain that the price of the payer swaption is given as

n + QT ESp(0,T, ,N,K) = NP (0,T )E 1 ciP (T, ti) . T − i ! ! X=1 where

t i f(0,u)du P (T, ti) = e− RT exp b1(T, ti)X1(T ) b2(T, ti)X2(T ) − − 2 1 bi(T, ti)bj(T, ti)Zij(0,T ) −2 i,j ! X=1 T where the joint density of X1(T ) and X2(T ) under measure Q is denoted by f(x1, x2). Further, due to Result (1) in the Appendix, the dynamics of X1(t) and X2(t) under the forward QT measure is given by

2 2 dX (t) = κ X (t) + Z ,k(0, t) b (t, T )σ ρ , b (t, T )σ σ dt 1 − 1 1 1 − 1 1 − 1 2 2 1 2 k ! X=1 QT +σ1dW1 (t),X1(0) = 0 2 2 dX (t) = κ X (t) + Z ,k(0, t) b (t, T )σ ρ , b (t, T )σ σ dt 2 − 2 2 2 − 2 2 − 1 2 1 1 2 k ! X=1 T T Q 2 Q +ρ , σ dW (t) + 1 ρ σ dW (t),X (0) = 0 1 2 2 1 − 1,2 2 2 2 q and using Result (2) of the Appendix, we can find conditioning on F0 T T κ1(T u) Q X1(T ) = b1(T,T )Z11(0,T ) b2(T,T )Z12(0,T ) + σ1e− − dW1 (u) − − 0 T Z T κ1(T u) Q = σ1e− − dW1 (u) Z0

9 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

and T T T T κ2(T u) Q 2 κ2(T u) Q X2(T ) = ρ1,2 σ2e− − dW1 (u) + 1 ρ1,2 σ2e− − dW2 (u). 0 − 0 Z q Z Thus,

QT E (X (T ) ) := µx = 0 1 |F0 1 QT E (X (T ) ) := µx = 0 2 |F0 2 QT 2 V ar (X1(T ) 0) := σx1 = Z11(0,T ) T |F V arQ (X (T ) ) := σ2 = Z (0,T ) 2 |F0 x2 22 T (κ1+κ2)(T u) ρ1,2 σ1(u)σ2(u)e− − du Z (0,T ) corr(X (T ),X (T )) := ρ = 0 = 12 1 2 x1x2 σ σ R x1 x2 Z11(0,T )Z22(0,T ) and p

2 2 x1 µx (x1 µx )(x2 µx ) x2 µx exp 1 − 1 2ρ − 1 − 2 + − 2 2(1 ρ2 ) σx x1x2 σx σx σx − x1x2 1 − 1 2 2 f(x , x ) =  −   1 2   2   2σπ x σx 1 ρ 1 2 − x1x2 p Hereon, the proof follows the same steps as in [1], p.163 but for completeness we will present it in more details here.

n + QT ESp(0,T, ,N,K) = NP (0,T )E 1 ciP (T, ti) T − i ! ! X=1 R2 n t i f(0,u)du = NP (0,T ) 1 cie− RT − i Z X=1 2 + 1 exp b (T, ti)x b (T, ti)x bi(T, ti)bj(T, ti)Zij(0,T ) f(x , x )dx dx − 1 1 − 2 2 − 2 1 2 1 2 i,j !  X=1  R2 n + b1(T,ti)x1 b2(T,ti)x2 = NP (0,T ) 1 ciA(T, ti)e− − f(x , x )dx dx − 1 2 1 2 i ! Z X=1

Next, freezing x1 and integrating over x2 we choose numerically x¯2 such that n b1(T,ti)x1 b2(T,ti)¯x2 ciA(T, ti)e− − = 1. i X=1

10 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

Then, denoting

b1(T,ti)x1 1 λi(x1) := ciA(T, ti)e− , γ := 2σπ x1 σx2 1 ρx x2 − 1 2 2 q 1 x1 µx1 ρx1x2 x1 µx1 E(x1) := 2 − , F (x1) := 2 − −2(1 ρ ) σx (1 ρ ) σx σx − x1x2  1  − x1x2 1 2 1 G(x ) := 1 2(1 ρ2 )σ2 − x1x2 x2 we have that

+ + n ∞ ∞ b2(T,ti)x2 ESp(0,T, ,N,K) = NP (0,T ) 1 λi(x1)e− T x¯2 − Z−∞ Z i=1 ! 2 X E(x1)+F (x1)(x2 µx ) G(x1)(x2 µx ) γe − 2 − − 2 dx2dx1 + + 2 ∞ E(x1) ∞ F (x1)(x2 µx ) G(x1)(x2 µx ) = NP (0,T ) γe e − 2 − − 2 dx2dx1 x¯2 Z−∞ Z + n + ∞ E(x1) b2(T,ti)µx ∞ (F (x1) b2(T,ti))(x2 µx ) NP (0,T ) γe − 2 λi(x1) e − − 2 − x¯2 Z−∞ i=1 Z 2 X G(x1)(x2 µx ) e− − 2 dx2dx1.

Using that

b 2 Ax2+Bx √π B B B e− = e 4A ϕ b 2A ϕ a 2A a √A − √2A − − √2A Z " s ! s !# where ϕ( ) denotes the cumulative standard distribution function, we obtain ·

ESp(0,T, ,N,K) T + F (x )2 ∞ E x √π 1 F (x1) ( 1) 4G(x1) = NP (0,T ) γe e 1 ϕ (x¯2 µx2 ) 2G(x1) dx1 G(x1) − − − 2G(x1) Z−∞ " !# − p2 + (F (x1) b2(T,ti)) ∞ E(xp) √π b2(T,ti)µx + p NP (0,T ) γe 1 e− 2 fG − G(x1) Z−∞ n p F (x1) b2(T, ti) λi(x ) 1 ϕ (¯x µx ) 2G(x ) − . 1 − 2 − 2 1 − i=1 " 2G(x1) !# X p p 

11 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

1.3.4 Implementation of the swaption semi closed-form formula

In this section, we shall devote some attention to the implementation of (semi-)closed formula for the payer (resp. receiver) swaption price given by equation (5) (resp.(6) ), since it requires numerical procedures of root finding and integration.

Let us consider the pricing formula of the payer swaption, given by equation (5). According to authors best knowledge; one can compute the integral only numerically.

After intensive tests, see Table 1, we have chosen the 20 point Gaussian quadrature,

19 ∞ g(x)dx wjg(xj ) ≈ j Z−∞ X=0 where the weights and abscissas are set according to the Gauss-Legendre polynomials, see [6].

The limits of the integration are set according to the fact that the integrand in formula (5) is actually a bounded function against a normal distribution. See Figure 1. Hence, one can truncate the domain of integration to the interval [µx Nσx , µx + Nσx ], where N N. 1 − 1 1 1 ∈ Since the precision of the integral approximation is affected by the integral bounds, by keeping in mind that the integrand is monotonic at the left and right wings, we have chosen the constant N adaptively, according to the following algorithm.

1. Compute lower and upper bounds for N = 1: l = Nσx1 , u = Nσx1 2. Compute the integrand at l and u − 8 3. If Integrand(l) < 10− , set lower bound as l. Else increase N and go to step 1. 8 4. If Integrand(u) < 10− , set lower bound as u. Else increase N and go to step 1.

Now, let us consider the equation (7). We shall find the root of this equation. We bracket l r the root in an interval [x2, x2] and use a hybrid root finding algorithm, which is a combination of Newton-Raphson and bisection algorithms. The numerical procedures that we used can be found in [6]1. The precision for the root finding algorithm is set to be 10E 7., see Table 1. − In the view of Table 1, one observes a trade-off between the precision of the results and the computing time. As a reasonable trade-off, we have chosen the 20 point Gauss-Legendre and the precision 10e 07 for the root finding algorithm. − 1Bracketing algorithm (zbrac) is in page 356 and root finding algorithm (rtsafe) is in page 370

12 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

0.2 (0.8, 0.5, 0.2, 0.1, −0.73) 0.18 (0.5, 0.3, 0.2, 0.2, −0.5 ) 0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0 −1 −0.5 0 0.5 1

Figure 1 Plot of the integrand in formula (5) for a 1Y-swaption with an underlying 1Y swap and the underlying process has the

parameters (κ1 = 0.8, κ2 = 0.5,σ1 = 0.2, σ2 = 0.1, ρ = 0.73), (κ1 = 0.5, κ2 = 0.3,σ1 = 0.2, σ2 = 0.2, ρ = 0.5) − − 10e-05 10e-07 10e-09 10e-11 0.023053435634 0.023053435640 0.023053435634 0.023053435634 10 00:00:01.79 00:00:02.34 00:00:02.90 00:00:03.46 0.023073833332 0.023073766462 0.023073766455 0.023073766455 20 00:00:02.48 00:00:03.26 00:00:04.04 00:00:04.82 0.023073835520 0.023073766434 0.023073766427 0.023073766427 30 00:00:03.17 00:00:04.20 00:00:05.21 00:00:06.25 0.023073834632 0.023073766434 0.023073766427 0.023073766427 40 00:00:03.87 00:00:05.15 00:00:06.39 00:00:08.18

Table 1 Comparison of the sum of squared errors of the swaption surface calculated by different number of Gauss-Legendre polyno- mials(on the rows) and different precisions of the root finding algorithm (on the columns).

1.4 Degeneration to a one-factor model

We want to investigate the conditions under which we can derive the one factor Hull-White (extended Hull-White, Vasicek, from now on 1FHW) model as a special case of the HJM-G2++ model introduced in Subsection 1.1.

Let us define X(t) := X1(t) + X2(t).

e

13 Introduction to the Heath-Jarrow-Morton Two-Factor Gaussian Model (HJM-G2++)

Proposition 1. Let us assume that the coefficients of the SDEs (3) and (4) satisfy

κ1 = κ2, ρ = 0.

Then, X(t) satisfies the following SDE:

e dX(t) = κX(t) + Z(0, t) dt + σdW (t) (8) −   e 2 2 e e ˜ where κ = κ1 = κ2, σ = σ1 + σ2e, Z(0, t) = Z11(0, t) +eZ22(0, t), i.e., X is a 1FHW process. p Proof:eLet us considere the strong solutionse of SDEs (3) and (4) t t κ1(t s) κ1(t u) κ1(t u) ˜ Q X1(t) = X1(s)e− − + (Z11(s, u) + Z12(s, u)) e− − du + σ1e− − dW1 (u), Zs Zs

t t κ2(t s) κ2(t u) κ2(t u) ˜ Q X2(t) = X2(s)e− − + (Z21(s, u) + Z22(s, u)) e− − du + σ2e− − dW2 (u). Zs Zs Then,

κ1(t s) κ2(t s) X(t) := X1(s)e− − + X2(s)e− − t t κ1(t u) κ2(t u) e + (Z11(s, u) + Z12(s, u)) e− − du + (Z21(s, u) + Z22(s, u)) e− − du s s Z t t Z κ1(t u) ˜ Q κ2(t u) ˜ Q + σ1e− − dW1 (u) + σ2e− − dW2 (u). Zs Zs By substituting the assumptions in the above equation, we get

t κ1(t s) κ1(t u) X(t) = (X1(s) + X2(s)) e− − + (Z11(s, u) + Z22(s, u)) e− − du s t Z e 2 2 κ1(t u) ˜ Q + σ1 + σ2 e− − dW (u) s q Z t t κ(t s) κ(t u) κ(t u) Q = X(t)e− − + Z(s, u)e− − du + σ e− − dW˜ (u) e e e Zs Zs which is the solutione of SDE (8). e e

14 Numerical implementation

2 Numerical implementation

Since no closed solutions are available for the prices of complex structured notes, we have to use numerical methods for their approximation. For this purpose, we have chosen to use a Monte Carlo simulation and a lattice approximation. In this section, we shall shortly describe their implementation.

2.1 Monte Carlo simulation

For the Monte Carlo simulation we have chosen to use the classical Euler discretization scheme of the driving stochastic differential equations (3) and (4). Then, if π is an arbitrary discretization of [0,T ] such that 0 t < t < . . . < tn = T we have ≤ 0 1 2 π π π π π Q X (ti ) = X (ti) + κ X (ti) + Z ,k(0, ti) ∆t + σ ∆ W , 1 +1 1 − 1 1 1 i 1 i 1 k ! X=1 X1(0) = 0 2 π π π π π Q 2 π Q X (ti ) = X (ti) + κ X (ti) + Z ,k(0, ti) ∆t + σ ρ∆ W + 1 ρ ∆ W , 2 +1 2 − 2 2 2 i 2 i 1 − i 2 k ! X=1  p  X2(0) = 0

π π Q Q π Q π with ∆i := ti ti 1, ∆i Wj := Wj (ti+1) Wj (ti) , i = 1, . . . , n, j = 1, 2. − − − Q Q Notice that we have decomposed the correlated Brownian motions W˜1 and W˜2 into a Q Q linear combination of independent Brownian motions W1 and W2 using Cholesky decomposition. In this form, it is straightforward to simulate the forward components using Monte Carlo simulation. If Z1 and Z2 are both standard normally distributed independent variables (i. e. Z1,Z2 (0, 1)) then we can rewrite the simulation scheme as ∼ N

2 π π π π π X (ti ) = X (ti) + κ X (ti) + Z ,k(0, ti) ∆t + σ Z ∆t , 1 +1 1 − 1 1 1 i 1 1 i k=1 ! X p X1(0) = 0 2 π π π π π 2 π X (ti ) = X (ti) + κ X (ti) + Z ,k(0, ti) ∆t + σ ρZ ∆t + 1 ρ Z ∆t , 2 +1 2 − 2 2 2 i 2 1 i − 2 i k=1 ! X  p p p  X2(0) = 0.

15 Numerical implementation

2.2 Treeconstruction

For shortness of the notations, let us denote the drifts of the two processes by ν1(t, X1) := κ1X1(t) + Z11(0, t) + Z12(0, t) and ν (t, X ) := −κ X (t) + Z (0, t) + Z (0, t). 2 2 − 2 2 21 22 a a Next, if we assume that at time t the tree is in state (x1, x2) then at time t + ∆t it can move to the following four states

a+ a+ x1 , x2 with probability puu

 a+ a−  x1 , x2 with probability pud

 a− a+  x1 , x2 with probability pdu

 a− a−  x1 , x2 with probability pdd   Definition 2.1. Let us define the up and down jumps of both process by

+ − xa := xa + J (t, xa) + 1 √∆σ t , xa := xa + J (t, xa) 1 √∆σ t 1 1 1 1 1 1 1 1 1 − 1 a+ a a a− a a x := x + J2(t, x ) + 1√∆σ t 2, x := x + J2(t, x ) 1√∆σ t 2 2 2 2 2 2 2 − where  

a Z1 if Z1 even, J1(t, x1) := Z1 + 1 else.  a Z2 if Z2 even, J2(t, x2) := Z2 + 1 else.  ν t,xa √ t ν t,xa √ t for Z := floor 1( 1 ) ∆ and Z := floor 2( 2 ) ∆ . 1 σ1 2 σ2 Remark 2.1. Weh want to pointi out here thath we cannoti choose exactly a a a ν1(t, x1)√∆t a ν2(t, x2)√∆t J1(t, x1) = , J2(t, x1) = σ1 σ2 because of two reasons • If we want to construct a recombining tree we would like that the absolute value of the up-jump and the absolute value of the down-jump are integer multiples of the same a jump heights. Notice that this will not be the case for real values of J1(t, x1) and a a a J2(t, x2). Therefore, we need a construction of J1(t, x1) and J2(t, x2) that allows them to take only integer values;

• On the other side, if we choose simply

a a a ν1(t, x1)√∆t a ν2(t, x2)√∆t J1(t, x1) = floor , J2(t, x2) = floor " σ1 # " σ2 #

16 Numerical implementation

the tree will be allowed to expand endlessly, hence we will take no account of the mean-reversion in the underlying processes. Finally, if we set

a Z1 if Z1 even, J1(t, x1) := Z1 + 1 else.  a Z2 if Z2 even, J2(t, x2) := Z2 + 1 else.  ν t,xa √ t ν t,xa √ t for Z := floor 1( 1 ) ∆ and Z := floor 2( 2 ) ∆ we notice that in a "normal 1 σ1 2 σ2 case" of not tooh strong meani reversion, theh values of J1i(t, x1) and J2(t, x2) will most of the time be equal to zero. Thus, we will have a product of two binomial trees in the usual sense. But as soon as ν1(t, x1)√∆σ t > 1 or in other words as soon as the local mean dominates the local variance,| the branching| of the tree will be changed and thus J1(t, x1) and J2(t, x2) will take the values of 2 in the upper part of the tree and of 2 in the down part. Thus, we would have both required− effects, namely that the local variance will be approximately matched and the effect of mean reversion will be taken into account.

a a Theorem 2.1. If the subsequent probabilities for the (x1, x2) node are given by

a a 1 ρσ1σ2 + (J1 1)(J2 1)σ1σ2 ν1(t, x1)√∆) t(J2 1 σ2 ν2(t, x2)√∆) t(J1 1 σ1 puu = − − − − − − 4 " σ1σ2 # a a 1 ρσ1σ2 + (J1 + 1)(J2 + 1)σ1σ2 ν1(t, x1)√∆ t(J2 + 1)σ2 ν2(t, x2)√∆ t(J1 + 1)σ1 pdd = − − 4 " σ1σ2 # a a 1 ρσ1σ2 (J1 1)(J2 + 1)σ1σ2 + ν1(t, x1)√∆ t(J2 + 1)σ2 + ν2(t, x2)√∆) t(J1 1 σ1 pud = − − − − 4 " σ1σ2 # a a 1 ρσ1σ2 (J1 + 1)(J2 1)σ1σ2 + ν1(t, x1)√∆) t(J2 1 σ2 + ν2(t, x2)√∆t(J1 + 1)σ1 pdu = − − − − 4 " σ1σ2 #

then with the choice of jump heights given in Definition 2.1, the tree matches locally perfectly the first and approximately the second moments of the underlying processes and in addition, up to terms of order ∆t2 it matches the local covariance between the underlying processes. Proof: Denoting the approximated (with the lattice) local mean and variance respectively with E(∆xi) and var(∆xi), for i = 1, 2 and the true local mean and variance of the underlying process by E(∆xi) and var(∆xi), for i = 1, 2 we notice that matching the first b c

17 Numerical implementation

two moments implies that the risk-neutral tree probabilities have to solve

a+ a a− a ! a E(∆x ) = (puu + pud)(x x ) + (pdu + pdd)(x x ) = E(∆x ) = ν (t, x )∆t 1 1 − 1 1 − 1 1 1 1 (9) b 2 a+ a 2 a− a 2 E(∆x ) = (puu + pud)(x x ) + (pdu + pdd)(x x ) 1 1 − 1 1 − 1 ! = E(∆x2) = σ2∆t + ν (t, xa)2∆t2 (10) b 1 1 1 1 a+ a a− a ! a E(∆x ) = (puu + pdu)(x x ) + (pud + pdd)(x x ) = E(∆x ) = ν (t, x )∆t 2 2 − 2 2 − 2 2 2 2 (11) b 2 a+ a 2 a− a 2 E(∆x ) = (puu + pdu)(x x ) + (pdu + pdd)(x x ) 2 2 − 2 2 − 2 =! E(∆x2) = σ2∆t + ν (t, xa)2∆t2 (12) b 2 2 2 2 E(∆x1∆x2) = cov(∆x1∆x2) + E(∆x1)E(∆x2) a+ a a+ a a+ a a− a = puu(x x )(x x ) + pud(x x )(x x ) 1 − 1 2 − 2 1 − 1 2 − 2 b d a− a ba+ ab a− a a− a +pdu(x x )(x x ) + pdd(x x )(x x ) 1 − 1 2 − 2 1 − 1 2 − 2 ! a a 2 = E(∆x1∆x2) = σ1σ2ρ∆t + ν1(t, x1)ν(t, x2)∆t (13) 1 = puu + pud + pdu + pdd (14)

where ∆x1 and ∆x2 denote the changes in the respective processes x1 and x2 from time t to time t + ∆t. Ignoring the terms of order ∆t2 in the matching of the correlation and a± a± substituting with the definitions of x1 and x2 we solve equations (9), (11), (13) and (14) for the four unknown probabilities and obtain

a a 1 ρσ1σ2 + (J1 1)(J2 1)σ1σ2 ν1(t, x1)√∆) t(J2 1 σ2 ν2(t, x2)√∆) t(J1 1 σ1 puu = − − − − − − 4 " σ1σ2 # a a 1 ρσ1σ2 + (J1 + 1)(J2 + 1)σ1σ2 ν1(t, x1)√∆ t(J2 + 1)σ2 ν2(t, x2)√∆ t(J1 + 1)σ1 pdd = − − 4 " σ1σ2 # a a 1 ρσ1σ2 (J1 1)(J2 + 1)σ1σ2 + ν1(t, x1)√∆ t(J2 + 1)σ2 + ν2(t, x2)√∆t(J1 1)σ1 pud = − − − − 4 " σ1σ2 # a a 1 ρσ1σ2 (J1 + 1)(J2 1)σ1σ2 + ν1(t, x1)√∆) t(J2 1 σ2 + ν2(t, x2)√∆t(J1 + 1)σ1 pdu = − − − − 4 " σ1σ2 #

Next, let us calculate the local conditional variances for the already found probabilities first

18 Numerical implementation

for the x1 process: var (∆x ) = E ∆x2 E (∆x )2 1 1 − 1 a+ a 2 a− a 2 a 2 2 = (puu + pud)(x x ) + (pdu + pdd)(x x ) ν1(t, x ) ∆t b b 1 − 1 1 − 1 − 1 c a ν1(t, x1)√∆t (J1 1)σ1 2 2 = − − (1 + J1) ∆tσ1 2σ1 ! a ν1(t, x1)√∆t (J1 1)σ1 2 2 a 2 + 1 − − (1 J1) ∆tσ1 ν1(t, x1) ∆t − 2σ1 ! − − = J2∆tσ2 + 2ν (t, xa)∆t ∆σ t 2J ν (t, xa)2∆t + σ2∆t − 1 1 1 1 1 1 − 1 1 1 = (J √∆σ t ν (t, xa)∆qt)2 + σ2∆t − 1 1 − 1 1 1 2 and since var (∆x1) = σ1∆t we have as in the rotated tree that the local variance is approximately matched due to the right definition of the J1 process. By symmetry, the same follows for the x2 process.

Notice that although the sum of the probabilities is one, they are not necessarily bounded between 0 and 1. It can however be shown that when we increase the refinement, the probabilities converge to values between 0 and 1 (see [5]). A similar problem is encountered also in the Hull and White [3] 2-factor trinomial tree construction and also by Brigo and Mercurio [1] in their G2++ quadrinomial tree construction. There are (at least) three possible ways to proceed.

The first approach is to change the correlation coefficient at every node where the probabilities are not bounded in [0, 1], until we have well-defined probabilities. Brigo and Mercurio claim that this procedure although theoretically not consistent is practically applicable as the correlation has a very negligible contribution to the result.

A second way, (considered by Zvan, Forsyth and Vetzal [7]) is to treat the probabilities of the tree as weights and neglect that they are not properly defined. In this respect, the authors show for a variety of finite difference constructions (although for rather regular parameters) that the meshes allowing for negative coefficients satisfy discrete maximum and minimum principles as the mesh size parameter approaches zero and show no obvious oscillations in the level curves of the priced option values.

Here we follow the second standard approach in the construction of the quadrinomial tree, since at least theoretically we can increase the refinement of the tree until we have well-defined probabilities.

A third way to proceed is to define two new processes, constructed as a linear combination of the original ones and orthogonal to each other (see [5]). The approximating tree for the new orthogonal processes will have then well defined probabilities.

19 Calibration to market data

3 Calibration to market data

In this section we will fit the HJM-G2++ model to market ATM caps/floors volatilities and ATM swaption volatility surfaces.

We will calibrate the model parameters by minimizing the squared differences between the market and the model prices. For that reason, let us assume we have n market prices Market price1,..., Market pricen and with the same specifications for a parameter vector Θ which we want to calibrate, we have n model prices Model price1,..., Model pricen. The objective function is the sum of the squared differences and is defined as

n (Market price Model price )2 . i − i i X=1

Since most of the market prices are cited in BS volatilities, we define also the absolute error between a one market BS volatility and its calibrated model correspondence as

absolute errori = Market volatility Model volatility , i = 1, . . . , n. | i − i|

In the implementation of the calibration of the HJM-G2++ we have the following inputs and outputs:

Input: Output:

Initial Calibrated parameter values of κ1, κ2, σ1, σ2, ρ

Market Caps/Floors or ATM Swaption Reports of the calibration results volatilities or prices

Type of the used Solver - Local (Simplex) or Global (Hybrid Asa) optimizer

The results of the calibration are delivered in Table 2 until Table 9.

20 Calibration to market data

0.06 ATM market volatility 18 0.058 ATM model volatility

0.056 17

0.054 16 0.052

Yield 0.05 15 Volatility in % 0.048 14

0.046 13 0.044

0.042 12 5 10 15 20 25 30 0 5 10 15 20 Time Maturity

(a) Initial term structure (b) At the money caps/floors market/model volatilities

Figure 2 Calibration to ATM Caps - data from 13.02.2001

0.056 21 ATM market volatility 20 ATM model volatility 0.054

19 0.052 18

0.05 17 Yield 0.048 16 Volatility in % 15 0.046 14

0.044 13

0.042 12 0 10 20 30 40 50 60 0 5 10 15 20 Time Maturity

(a) Initial term structure (b) At the money caps/floors market/model volatilities

Figure 3 Calibration to ATM Caps - data from 06.08.2008

21 Calibration to market data

0.04 70 ATM model volatility 65 ATM market volatility

0.035 60

55 0.03 50

45 0.025 Yield 40 Volatility in % 35 0.02 30

0.015 25 20

0.01 15 0 10 20 30 40 50 60 0 5 10 15 20 Time Maturity

(a) Initial term structure (b) At the money caps/floors market/model volatilities

Figure 4 Calibration to ATM Caps - data from 30.04.2009

4.5 80 ATM market volatility 4 ATM model volatility 70

3.5 60 3

2.5 50 Yield 2 40 Volatility in % 1.5 30 1

20 0.5

0 10 0 10 20 30 40 50 0 5 10 15 20 25 30 Time Maturity

(a) Initial term structure (b) At the money caps/floors market/model volatilities

Figure 5 Calibration to ATM Caps - data from 08.07.2009

22 Calibration to market data

18 5

16 4

14 3

12 2 Absolute error 10 1

Swaption BS implied volatility 8 0 10 10 10 10 8 8 5 6 5 6 4 4 2 2 0 0 0 0 Swaption maturity Tenor Swaption maturity Tenor

(a) At the money market swaption volatility surface (b) Calibration absolute error

Figure 6 Calibration to ATM Swaptions - data from 13.02.2001

25 6

5 20 4

15 3

2 10 Absolute error 1

5 0 Swaption BS implied volatility in % 30 30 30 30 20 20 20 20 10 10 10 10 0 0 0 0 Swaption maturity Tenor Swaption maturity Tenor

(a) At the money market swaption volatility surface (b) Calibration absolute error

Figure 7 Calibration to ATM Swaptions - data from 06.08.2008

23 Calibration to market data

60 60

50 50 40 40 30 30 20 Absolute error 20 10

10 0 Swaption BS implied volatility in % 30 30 30 30 20 20 20 20 10 10 10 10 0 0 0 0 Swaption maturity Tenor Swaption maturity Tenor

(a) At the money market swaption volatility surface (b) Calibration absolute error

Figure 8 Calibration to ATM Swaptions - data from 30.04.2009

60 15

50 10 40

30 5 Absolute error 20

10 0 Swaption BS implied volatility in % 30 30 30 30 20 20 20 20 10 10 10 10 0 0 0 0 Swaption maturity Tenor Swpation maturity Tenor

(a) At the money market swaption volatility surface (b) Calibration absolute error

Figure 9 Calibration to ATM Swaptions - data from 08.07.2009

24 Conclusion

4 Conclusion

We have presented the HJM-G2++ model which is a two-factor Gaussian short rate model, equivalent to the original two-factor Hull and White model and the G2++ model by Brigo and Mercurio. Although an equivalent representation, the model has (due to its derivation within the HJM framework) a very intuitive form which does not need additional fitting to the initial term structure and is an easier one for numerical implementation.

We have calibrated the HJM-G2++ model to different sets of market data of ATM Caps/Floors volatilities and ATM Swaption volatility surfaces. The obtained results show that due to its gaussian nature, the model is not suitable of fitting strongly humped short-term effects. However, the model delivers satisfactory fitting to options with middle and long-term maturities and is able to reproduce humped volatility structures.

Finally, we have offered a Monte Carlo simulation scheme and a lattice approximation as numerical methods for pricing claims with no closed-form solution. As a more general method for pricing structured notes, we consider here the tree approximation method since it can be easily adapted for pricing derivatives with American features as well as strongly path-dependent options (see [5]). Further, the lattice approximation scheme has a faster convergence than the Monte Carlo methods. However, one can use the Monte Carlo simulation results as a back-testing for the tree approximation.

25 Appendix

5 Appendix

Result (1) The equivalent T -forward risk-adjusted measure QT (associated with the bond maturing at time T ) is defined as dQT B(0)P (T,T ) = , dQ 0B(T )P ( ,T ) where B(t) denotes the money-market account, driven by dB(t) = B(t)r(t)dt, B(0) = 1. Notice that T T T dQ exp 0 r(u)du exp 0 [f(0, u) + X1(u) + X2(u)] du = − = − dQ  0PR( ,T )   R 0P ( ,T )  T = exp [X (u) + X (u)] du . − 1 2  Z0 

Then we find that T 1 T T X (u)du = σ2b (u,T )2du + b (u, T )σ dW˜ Q(u) 1 2 1 1 1 1 1 Z0 Z0 Z0 T κ (κ + κ )e κ1(T u) + κ e (κ1+κ2)(T u) +ρ σ σ 2 − 1 2 − − 1 − − du 1,2 1 2 κ κ (κ + κ ) Z0 1 2 1 2 and applying the same steps in the integration of the X2-process, we obtain T T T T 1 2 2 1 2 2 X1(u)du + X2(u)du = b1(x,T ) σ1dx + b2(x,T ) σ2dx 0 0 2 0 2 0 Z Z Z T Z +ρ1,2 b1(x, T )b2(x, T )σ1σ2dx 0 T Z T ˜ Q ˜ Q + b1(x, T )σ1dW1 (x) + b2(x, T )σ2dW2 (x). Z0 Z0 ˜ Q ˜ Q Further, we decompose the Brownian motions W1 (t) and W2 (t) into a sum of two Q Q independent Brownian motions W1 (t) and W2 (t) such that ˜ Q Q dW1 (t) = dW1 (t) Q Q 2 Q dW˜ (t) = ρ , dW (t) + 1 ρ dW (t) 2 1 2 1 − 1,2 2 q

26 Appendix

and then we can write

T T T 2 dQ 1 2 1 2 = exp (b1(x,T )σ1 + ρ1,2b2(x, T )σ2(x)) dx 1 ρ1,2b2(x,T )σ2 dx dQ − 2 0 − 2 0 − hT Z T Z q  Q 2 Q (b1(x, T )σ1 + ρ1,2b2(x, T )σ2) dW1 (x) 1 ρ1,2b2(x,T )σ2 dW2 (x) . − 0 − 0 − Z Z q  i Next, the for the change of measure implies (referring to [1]) that the QT QT T Brownian motions W1 (t) and W2 (t), under the forward measure Q , are given as

QT Q dW1 (t) = dW1 (t) + (b1(t, T )σ1 + ρ1,2b2(t, T )σ2) dt T dW Q (t) = dW Q(t) + 1 ρ2 b (t,T )σ dt. 2 2 − 1,2 2 2 q Q Q QT Since W1 (t) and W2 (t) are independent Brownian motions, so are also W1 (t) and QT W2 (t). Then, recalling that the processes X1(t) and X2(t) are given under the measure Q as

2 Q dX1(t) = κ1X1(t) + Z1,k(0, t) dt + σ1dW1 (t),X1(0) = 0 − ! Xk=1 2 Q 2 Q dX2(t) = κ2X2(t) + Z2,k(0, t) dt + ρ1,2σ2dW1 (t) + 1 ρ1,2σ2dW2 (t),X2(0) = 0 − ! − Xk=1 q we can write their dynamics under the forward QT measure as

2 2 dX1(t) = κ1X1(t) + Z1,k(0, t) b1(t, T )σ1 ρ1,2b2(t, T )σ1σ2 dt − − − ! Xk=1 QT +σ1dW1 (t),X1(0) = 0 2 2 dX2(t) = κ2X2(t) + Z2,k(0, t) b2(t, T )σ2 ρ1,2b1(t, T )σ1σ2 dt − − − ! Xk=1 T T Q 2 Q +ρ , σ dW (t) + 1 ρ σ dW (t),X (0) = 0. 1 2 2 1 − 1,2 2 2 2 q

27 Appendix

Result (2): Under measure QT , we want to find X (t) and X (t) for t T . We have that 1 2 ≤ t t t κ1(t u) κ1(t u) 2 κ1(t u) X1(t) = Z11(0, u)e− − du + Z12(0, u)e− − du σ1e− − b1(0,T )du 0 0 − 0 Z t Z t Z T (κ1+κ2)(t 0) κ1(t u) Q ρ12 σ1σ2e− − b2(u, T )du + σ1e− − dW1 (u) − 0 0 t Z t Z 2 κ1(t u) (κ1+κ2)(t 0) = σ1e− − b1(0, t)du + ρ12 σ1σ2e− − b2(u, t)du 0 0 Z t Z t 2 κ1(t u) (κ1+κ2)(t 0) σ1e− − b1(0,T )du ρ12 σ1σ2e− − b2(u, T )du − 0 − 0 Z t Z T κ1(t u) Q + σ1e− − dW1 (u) 0 Z t T κ1(t u) Q = b (t, T )Z (0, t) b (t, T )Z (0, t) + σ e− − dW (u) − 1 11 − 2 12 1 1 Z0 Thus,

T EQ (X (t) ) := b (t, T )Z (0, t) b (t, T )Z (0, t) 1 |F0 − 1 11 − 2 12 QT E (X2(t) 0) := b2(t, T )Z21(0, t) b2(t, T )Z22(0, t) |F − t − T Q 2 2κ1(t u) V ar (X1(t) 0) := σ1e− − du = Z11(0, t) |F 0 Z t T Q 2 2κ2(t u) V ar (X (t) ) := σ e− − du = Z (0, t) 2 |F0 2 22 Z0 t (κ1+κ2)(t u) ρ1,2 0 σ1σ2e− − du Z12(0, t) corr(X1(t),X2(t)) := = R Z11(0, t)Z22(0, t) Z11(0, t)Z22(0, t) p p

28 References

References

[1] D. Brigo and F. Mercurio. Interest rate models—theory and practice. Springer Finance. Springer-Verlag, Berlin, second edition, 2006. With smile, inflation and credit. [2] O. Cheyette. Markov Representation of the Heath-Jarrow-Morton Model. Presented at the UCLA Workshop on the Future of Fixed Income Financial Theory, 1996. [3] J. Hull and A. White. Numerical procedures for implementing term structure models ii: two-factor models. The Journal of Derivatives, 2:37–47, 1994. [4] A. Li., P. Ritchken, and L. Sankarasubramanian. Lattice models for pricing american interest rate claims. The Journal of Finance, 50(2):719–737, 19954. [5] K. Natcheva. On Numerical Pricing Methods of Innovative Financial Products. Diss. Technische Universität Kaiserslautern 2006, Fachbereich Mathematik, 2006. [6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C++. Cambridge University Press, second edition, 2002. [7] F. P. Zvan, R. and K. Vetzal. Negative coefficients in two factor option pricing models. 2001.

29 11. H. W. Hamacher, A. Schöbel 24. H. W. Hamacher, S. A. Tjandra Published reports of the On Center Cycles in Grid Graphs Mathematical Modelling of Evacuation Fraunhofer ITWM (15 pages, 1998) Problems: A State of Art (44 pages, 2001) 12. H. W. Hamacher, K.-H. Küfer Inverse radiation therapy planning - 25. J. Kuhnert, S. Tiwari The PDF-files of the ­following reports a multiple objective optimisation approach Grid free method for solving the Poisson are available under: (14 pages, 1999) equation Keywords: Poisson equation, Least squares method, www.itwm.fraunhofer.de/de/ 13. C. Lang, J. Ohser, R. Hilfer Grid free method (19 pages, 2001) zentral__berichte/berichte On the Analysis of Spatial Binary Images (20 pages, 1999) 1. D. Hietel, K. Steiner, J. Struckmeier 26. T. Götz, H. Rave, D. Reinel-Bitzer, K. Steiner, H. Tiemeier A Finite - Volume Particle Method for 14. M. Junk Simulation of the fiber spinning process Compressible Flows On the Construction of Discrete Equilibrium (19 pages, 1998) Keywords: Melt spinning, fiber model, Lattice Boltz- Distributions for Kinetic Schemes mann, CFD (24 pages, 1999) (19 pages, 2001) 2. M. Feldmann, S. Seibold Damage Diagnosis of Rotors: Application 15. M. Junk, S. V. Raghurame Rao 27. A. Zemitis of Hilbert­ Transform and Multi-Hypothe- A new discrete velocity method for Navier- On interaction of a liquid film with an obstacle sis Testing Stokes equations Keywords: impinging jets, liquid film, models, numeri- Keywords: Hilbert transform, damage diagnosis, (20 pages, 1999) cal solution, shape Kalman filtering, non-linear dynamics (22 pages, 2001) (23 pages, 1998) 16. H. Neunzert Mathematics as a Key to Key Technologies 28. I. Ginzburg, K. Steiner 3. Y. Ben-Haim, S. Seibold (39 pages (4 PDF-Files), 1999) Free surface lattice-Boltzmann method to Robust Reliability of Diagnostic Multi- model the filling of expanding cavities by Hypothesis Algorithms: Application to 17. J. Ohser, K. Sandau Bingham Fluids Rotating Machinery Keywords: Generalized LBE, free-surface phenomena, Keywords: Robust reliability, convex models, Kalman fil- Considerations about the Estimation of the interface boundary conditions, filling processes, Bing- tering, multi-hypothesis diagnosis, rotating machinery, Size Distribution in Wicksell’s Corpuscle ham viscoplastic model, regularized models crack diagnosis Problem (22 pages, 2001) (24 pages, 1998) (18 pages, 1999)

29. H. Neunzert 4. F.-Th. Lentes, N. Siedow 18. E. Carrizosa, H. W. Hamacher, R. Klein, »Denn nichts ist für den Menschen als Men- Three-dimensional Radiative Heat Transfer S. Nickel schen etwas wert, was er nicht mit Leiden- in Glass Cooling Processes Solving nonconvex planar location prob- schaft tun kann« (23 pages, 1998) lems by finite dominating sets Vortrag anlässlich der Verleihung des Keywords: Continuous Location, Polyhedral Gauges, Akademie­preises des Landes Rheinland- 5. A. Klar, R. Wegener Finite Dominating Sets, Approximation, Sandwich Algo- rithm, Greedy Algorithm Pfalz am 21.11.2001 A hierarchy of models for multilane vehicu- (19 pages, 2000) Keywords: Lehre, Forschung, angewandte Mathematik, lar traffic Mehrskalenanalyse, Strömungsmechanik Part I: Modeling (18 pages, 2001) (23 pages, 1998) 19. A. Becker A Review on Image Distortion Measures Part II: Numerical and stochastic investigations Keywords: Distortion measure, human visual system 30. J. Kuhnert, S. Tiwari (17 pages, 1998) (26 pages, 2000) Finite pointset method based on the projec- tion method for simulations of the incom- pressible Navier-Stokes equations 6. A. Klar, N. Siedow 20. H. W. Hamacher, M. Labbé, S. Nickel, Keywords: Incompressible Navier-Stokes equations, T. Sonneborn Boundary Layers and Domain Decomposi- Meshfree method, Projection method, Particle scheme, tion for Radiative Heat Transfer and Diffu- Polyhedral Properties of the Uncapacitated Least squares approximation sion Equations: Applications to Glass Manu- Multiple Allocation Hub Location Problem AMS subject classification: 76D05, 76M28 facturing Processes Keywords: integer programming, hub location, facility (25 pages, 2001) (24 pages, 1998) location, valid inequalities, facets, branch and cut (21 pages, 2000) 31. R. Korn, M. Krekel 7. I. Choquet Optimal Portfolios with Fixed Consumption Heterogeneous catalysis modelling and 21. H. W. Hamacher, A. Schöbel or Income Streams numerical simulation in rarified gas flows Design of Zone Tariff Systems in Public Keywords: Portfolio optimisation, stochastic control, Part I: Coverage locally at equilibrium Transportation HJB equation, discretisation of control problems (30 pages, 2001) (24 pages, 1998) (23 pages, 2002)

8. J. Ohser, B. Steinbach, C. Lang 22. D. Hietel, M. Junk, R. Keck, D. Teleaga 32. M. Krekel Efficient Texture Analysis of Binary Images The Finite-Volume-Particle Method for Optimal portfolios with a loan dependent (17 pages, 1998) Conservation Laws credit spread (16 pages, 2001) Keywords: Portfolio optimisation, stochastic control, HJB equation, credit spread, log utility, power utility, 9. J. Orlik non-linear wealth dynamics 23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, Homogenization for viscoelasticity of the (25 pages, 2002) integral type with aging and shrinkage S. Nickel (20 pages, 1998) Location Software and Interface with GIS and Supply Chain Management 33. J. Ohser, W. Nagel, K. Schladitz Keywords: facility location, software development, The Euler number of discretized sets – on the 10. J. Mohring geographical information systems, supply chain man- choice of adjacency in homogeneous lattices Helmholtz Resonators with Large Aperture agement Keywords: image analysis, Euler number, neighborhod (21 pages, 1998) (48 pages, 2001) relationships, cuboidal lattice (32 pages, 2002) 34. I. Ginzburg, K. Steiner Keywords: multiple criteria optimization, representa- 53. S. Kruse Lattice Boltzmann Model for Free-Surface tive systems of Pareto solutions, adaptive triangulation, On the Pricing of Forward Starting Options flow and Its Application to Filling Process in clustering and disaggregation techniques, visualization under Stochastic Volatility of Pareto solutions, medical physics, external beam ra- Casting Keywords: Option pricing, forward starting options, diotherapy planning, intensity modulated radiotherapy Keywords: Lattice Boltzmann models; free-surface phe- , stochastic volatility, cliquet options (31 pages, 2003) nomena; interface boundary conditions; filling pro- (11 pages, 2003) cesses; injection molding; volume of fluid method; in- terface boundary conditions; advection-schemes; up- 44. T. Halfmann, T. Wichmann 54. O. Iliev, D. Stoyanov wind-schemes Overview of Symbolic Methods in Industrial (54 pages, 2002) Multigrid – adaptive local refinement solver Analog Circuit Design for incompressible flows Keywords: CAD, automated analog circuit design, sym- Keywords: Navier-Stokes equations, incompressible flow, bolic analysis, computer algebra, behavioral modeling, 35. M. Günther, A. Klar, T. Materne, projection-type splitting, SIMPLE, multigrid methods, system simulation, circuit sizing, macro modeling, dif- R. Wegener adaptive local refinement, lid-driven flow in a cavity ferential-algebraic equations, index Multivalued fundamental diagrams and stop (37 pages, 2003) (17 pages, 2003) and go waves for continuum traffic equations Keywords: traffic flow, macroscopic equations, kinetic 55. V. Starikovicius 45. S. E. Mikhailov, J. Orlik derivation, multivalued fundamental diagram, stop and The multiphase flow and heat transfer in go waves, phase transitions Asymptotic Homogenisation in Strength porous media (25 pages, 2002) and Fatigue Durability Analysis of Compos- Keywords: Two-phase flow in porous media, various ites formulations, global pressure, multiphase mixture mod- 36. S. Feldmann, P. Lang, D. Prätzel-Wolters Keywords: multiscale structures, asymptotic homoge- el, numerical simulation Parameter influence on the zeros of net- nization, strength, fatigue, singularity, non-local con- (30 pages, 2003) ditions work determinants (14 pages, 2003) Keywords: Networks, Equicofactor matrix polynomials, 56. P. Lang, A. Sarishvili, A. Wirsen Realization theory, Matrix perturbation theory Blocked neural networks for knowledge ex- (30 pages, 2002) 46. P. Domínguez-Marín, P. Hansen, traction in the software development process N. Mladenovi ´c , S. Nickel Keywords: Blocked Neural Networks, Nonlinear Regres- 37. K. Koch, J. Ohser, K. Schladitz Heuristic Procedures for Solving the sion, Knowledge Extraction, Code Inspection Spectral theory for random closed sets and Discrete Ordered Median Problem (21 pages, 2003) es­timating the covariance via frequency Keywords: genetic algorithms, variable neighborhood search, discrete facility location space (31 pages, 2003) 57. H. Knaf, P. Lang, S. Zeiser Keywords: Random set, Bartlett spectrum, fast Fourier Diagnosis aiding in Regulation transform, power spectrum Thermography using Fuzzy Logic (28 pages, 2002) 47. N. Boland, P. Domínguez-Marín, S. Nickel, Keywords: fuzzy logic,knowledge representation, J. Puerto expert system 38. D. d’Humières, I. Ginzburg Exact Procedures for Solving the Discrete (22 pages, 2003) Multi-reflection boundary conditions for Ordered Median Problem Keywords: discrete location, Integer programming lattice Boltzmann models 58. M. T. Melo, S. Nickel, F. Saldanha da Gama (41 pages, 2003) Keywords: lattice Boltzmann equation, boudary condis- Large­scale models for dynamic multi­ tions, bounce-back rule, Navier-Stokes equation commodity capacitated facility location (72 pages, 2002) 48. S. Feldmann, P. Lang Keywords: supply chain management, strategic Padé-like reduction of stable discrete linear planning, dynamic location, modeling 39. R. Korn systems preserving their stability (40 pages, 2003) Elementare Finanzmathematik Keywords: Discrete linear systems, model reduction, stability, Hankel matrix, Stein equation Keywords: Finanzmathematik, Aktien, Optionen, Port­ 59. J. Orlik (16 pages, 2003) folio-Optimierung, Börse, Lehrerweiterbildung, Mathe- Homogenization for contact problems with matikunterricht (98 pages, 2002) periodically rough surfaces 49. J. Kallrath, S. Nickel Keywords: asymptotic homogenization, contact ­problems A Polynomial Case of the Batch Presorting (28 pages, 2004) 40. J. Kallrath, M. C. Müller, S. Nickel Problem Batch Presorting Problems: Keywords: batch presorting problem, online optimization, 60. A. Scherrer, K.-H. Küfer, M. Monz, Models and Complexity Results competetive analysis, polynomial algorithms, logistics F. Alonso, T. Bortfeld Keywords: Complexity theory, Integer programming, (17 pages, 2003) Assigment, Logistics IMRT planning on adaptive volume struc- tures – a significant advance of computa- (19 pages, 2002) 50. T. Hanne, H. L. Trinkaus tional complexity knowCube for MCDM – Keywords: Intensity-modulated radiation therapy 41. J. Linn Visual and Interactive Support for (IMRT), inverse treatment planning, adaptive volume On the frame-invariant description of the Multicriteria Decision Making structures, hierarchical clustering, local refinement, phase space of the Folgar-Tucker equation Key words: Multicriteria decision making, knowledge adaptive clustering, convex programming, mesh gener- Key words: fiber orientation, Folgar-Tucker equation, in- management, decision support systems, visual interfac- ation, multi-grid methods jection molding es, interactive navigation, real-life applications. (24 pages, 2004) (5 pages, 2003) (26 pages, 2003) 61. D. Kehrwald 42. T. Hanne, S. Nickel 51. O. Iliev, V. Laptev Parallel lattice Boltzmann simulation A Multi-Objective Evolutionary Algorithm On Numerical Simulation of Flow Through of complex flows for Scheduling and Inspection Planning in Oil Filters Keywords: Lattice Boltzmann methods, parallel com- Software Development Projects Keywords: oil filters, coupled flow in plain and porous puting, microstructure simulation, virtual material de- Key words: multiple objective programming, project media, Navier-Stokes, Brinkman, numerical simulation sign, pseudo-plastic fluids, liquid composite moulding management and scheduling, software development, (8 pages, 2003) (12 pages, 2004) evolutionary algorithms, efficient set (29 pages, 2003) 52. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva 62. O. Iliev, J. Linn, M. Moog, D. Niedziela, On a Multigrid Adaptive Refinement Solver V. Starikovicius 43. T. Bortfeld , K.-H. Küfer, M. Monz, for Saturated Non-Newtonian Flow in On the Performance of Certain Iterative A. Scherrer, C. Thieke, H. Trinkaus Porous Media Solvers for Coupled Systems Arising in Dis- Intensity-Modulated Radiotherapy - A Large Keywords: Nonlinear multigrid, adaptive refinement, cretization of Non-Newtonian Flow Equa- Scale Multi-Criteria Programming Problem non-Newtonian flow in porous media tions (17 pages, 2003) Keywords: Performance of iterative solvers, Precondi- 72. K. Schladitz, S. Peters, D. Reinel-Bitzer, 81. N. Marheineke, R. Wegener tioners, Non-Newtonian flow A. Wiegmann, J. Ohser Fiber Dynamics in Turbulent Flows (17 pages, 2004) Design of acoustic trim based on ­geometric Part I: General Modeling Framework modeling and flow simulation for non-woven Keywords: fiber-fluid interaction; Cosserat rod; turbu- 63. R. Ciegis, O. Iliev, S. Rief, K. Steiner Keywords: random system of fibers, Poisson lence modeling; Kolmogorov’s energy spectrum; dou- On Modelling and Simulation of Different line process, flow resistivity, acoustic absorption, ble-velocity correlations; differentiable Gaussian fields Regimes for Liquid Polymer Moulding Lattice-Boltzmann method, non-woven (20 pages, 2005) Keywords: Liquid Polymer Moulding, Modelling, Simu- (21 pages, 2005) lation, Infiltration, Front Propagation, non-Newtonian Part II: Specific Taylor Drag flow in porous media 73. V. Rutka, A. Wiegmann Keywords: flexible fibers; k-e turbulence model; fi- (43 pages, 2004) Explicit Jump Immersed Interface Method ber-turbulence interaction scales; air drag; random for virtual material design of the effective ­Gaussian aerodynamic force; ; stochastic differential equations; ARMA process 64. T. Hanne, H. Neu elastic moduli of composite materials (18 pages, 2005) Simulating Human Resources in Keywords: virtual material design, explicit jump im- Software Development Processes mersed interface method, effective elastic moduli, Keywords: Human resource modeling, software process, composite materials 82. C. H. Lampert, O. Wirjadi productivity, human factors, learning curve (22 pages, 2005) An Optimal Non-Orthogonal Separation of (14 pages, 2004) the Anisotropic Gaussian Convolution Filter 74. T. Hanne Keywords: Anisotropic Gaussian filter, linear filtering, ori- entation space, nD image processing, separable filters 65. O. Iliev, A. Mikelic, P. Popov Eine Übersicht zum Scheduling von Baustellen (25 pages, 2005) Fluid structure interaction problems in de- Keywords: Projektplanung, Scheduling, Bauplanung, formable porous media: Toward permeabil- Bauindustrie ity of deformable porous media (32 pages, 2005) 83. H. Andrä, D. Stoyanov Keywords: fluid-structure interaction, deformable po- Error indicators in the parallel finite ele- rous media, upscaling, linear elasticity, stokes, finite el- 75. J. Linn ment solver for linear elasticity DDFEM ements The Folgar-Tucker Model as a ­Differetial Keywords: linear elasticity, finite element method, hier- (28 pages, 2004) Algebraic System for Fiber Orientation archical shape functions, domain decom-position, par- allel implementation, a posteriori error estimates ­Calculation (21 pages, 2006) 66. F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, Keywords: fiber orientation, Folgar–Tucker model, in- P. Vabishchevich variants, algebraic constraints, phase space, trace sta- On numerical solution of 1-D poroelasticity bility 84. M. Schröder, I. Solchenbach equations in a multilayered domain (15 pages, 2005) Optimization of Transfer Quality in Keywords: poroelasticity, multilayered material, finite Regional Public Transit volume discretization, MAC type grid 76. M. Speckert, K. Dreßler, H. Mauch, Keywords: public transit, transfer quality, quadratic (41 pages, 2004) A. Lion, G. J. Wierda assignment problem (16 pages, 2006) Simulation eines neuartigen Prüf­systems 67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe für Achserprobungen durch MKS-Model- Diffraction by image processing and its ap- lierung einschließlich ­Regelung 85. A. Naumovich, F. J. Gaspar plication in materials science Keywords: virtual test rig, suspension testing, On a multigrid solver for the three-dimen- Keywords: porous microstructure, image analysis, ran- multibody simulation, modeling hexapod test rig, opti- sional Biot poroelasticity system in multi- dom set, fast Fourier transform, power spectrum, Bar- mization of test rig configuration layered domains tlett spectrum (20 pages, 2005) Keywords: poroelasticity, interface problem, multigrid, (13 pages, 2004) operator-dependent prolongation 77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, (11 pages, 2006) 68. H. Neunzert F. Alonso, A. S. A. Sultan, Th. Bortfeld, Mathematics as a Technology: Challenges D. Craft, Chr. Thieke 86. S. Panda, R. Wegener, N. Marheineke for the next 10 Years Multicriteria optimization in intensity Slender Body Theory for the Dynamics of Keywords: applied mathematics, technology, modelling, modulated radiotherapy planning Curved Viscous Fibers simulation, visualization, optimization, glass processing, Keywords: multicriteria optimization, extreme solu- Keywords: curved viscous fibers; fluid dynamics; Navier- spinning processes, fiber-fluid interaction, trubulence tions, real-time decision making, adaptive approxima- Stokes equations; free boundary value problem; asymp- effects, topological optimization, multicriteria optimiza- tion schemes, clustering methods, IMRT planning, re- totic expansions; slender body theory tion, Uncertainty and Risk, financial mathematics, Mal- verse engineering (14 pages, 2006) liavin calculus, Monte-Carlo methods, virtual material (51 pages, 2005) design, filtration, bio-informatics, system biology 87. E. Ivanov, H. Andrä, A. Kudryavtsev (29 pages, 2004) 78. S. Amstutz, H. Andrä Domain Decomposition Approach for Auto- A new algorithm for topology optimization matic Parallel Generation of Tetrahedral Grids 69. R. Ewing, O. Iliev, R. Lazarov, A. Naumovich using a level-set method Key words: Grid Generation, Unstructured Grid, Delau- On convergence of certain finite difference Keywords: shape optimization, topology optimization, nay Triangulation, Parallel Programming, Domain De- discretizations for 1­D poroelasticity inter- topological sensitivity, level-set composition, Load Balancing face problems (22 pages, 2005) (18 pages, 2006) Keywords: poroelasticity, multilayered material, finite volume discretizations, MAC type grid, error estimates 79. N. Ettrich 88. S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert, (26 pages,2004) Generation of surface elevation models for R. Wegener urban drainage simulation A Meshfree Method for Simulations of In- 70. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva Keywords: Flooding, simulation, urban elevation teractions between Fluids and Flexible On Efficient Simulation of Non-Newto- models, laser scanning Structures nian Flow in Saturated Porous Media with a (22 pages, 2005) Key words: Meshfree Method, FPM, Fluid Structure Multigrid Adaptive Refinement Solver Interaction, Sheet of Paper, Dynamical Coupling Keywords: Nonlinear multigrid, adaptive renement, 80. H. Andrä, J. Linn, I. Matei, I. Shklyar, (16 pages, 2006) non-Newtonian in porous media K. Steiner, E. Teichmann (25 pages, 2004) OPTCAST – Entwicklung adäquater Struk- 89. R. Ciegis , O. Iliev, V. Starikovicius, K. Steiner turoptimierungsverfahren für Gießereien Numerical Algorithms for Solving Problems 71. J. Kalcsics, S. Nickel, M. Schröder Technischer Bericht (KURZFASSUNG) of Multiphase Flows in Porous Media Towards a Unified Territory Design Approach Keywords: Topologieoptimierung, Level-Set-Methode, Keywords: nonlinear algorithms, finite-volume method, – Applications, Algorithms and GIS Integration Gießprozesssimulation, Gießtechnische Restriktionen, software tools, porous media, flows Keywords: territory desgin, political districting, sales CAE-Kette zur Strukturoptimierung (16 pages, 2006) territory alignment, optimization algorithms, Geo- (77 pages, 2005) graphical Information Systems (40 pages, 2005) 90. D. Niedziela, O. Iliev, A. Latz Keywords: Elastic BVP, elastoplastic BVP, variational 109. Ph. Süss, K.-H. Küfer On 3D Numerical Simulations of Viscoelastic inequalities, rate-independency, hysteresis, linear kine- Smooth intensity maps and the Bortfeld- Fluids matic hardening, stop- and play-operator Boyer sequencer (21 pages, 2006) Keywords: non-Newtonian fluids, anisotropic viscosity, Keywords: probabilistic analysis, intensity modulated integral constitutive equation radiotherapy treatment (IMRT), IMRT plan application, (18 pages, 2006) 100. M. Speckert, K. Dreßler, H. Mauch step-and-shoot sequencing MBS Simulation of a hexapod based sus- (8 pages, 2007) 91. A. Winterfeld pension test rig Application of general semi-infinite Pro- Keywords: Test rig, MBS simulation, suspension, 110. E. Ivanov, O. Gluchshenko, H. Andrä, gramming to Lapidary Cutting Problems hydraulics, controlling, design optimization A. Kudryavtsev (12 pages, 2006) Keywords: large scale optimization, nonlinear program- Parallel software tool for decomposing and ming, general semi-infinite optimization, design center- meshing of 3d structures ing, clustering 101. S. Azizi Sultan, K.-H. Küfer Keywords: a-priori domain decomposition, unstruc- (26 pages, 2006) A dynamic algorithm for beam orientations tured grid, Delaunay mesh generation in multicriteria IMRT planning (14 pages, 2007) 92. J. Orlik, A. Ostrovska Keywords: radiotherapy planning, beam orientation Space-Time Finite Element Approximation optimization, dynamic approach, evolutionary algo- 111. O. Iliev, R. Lazarov, J. Willems and Numerical Solution of Hereditary rithm, global optimization Numerical study of two-grid precondition- (14 pages, 2006) Linear Viscoelasticity Problems ers for 1d elliptic problems with highly Keywords: hereditary viscoelasticity; kern approxima- oscillating discontinuous coefficients tion by interpolation; space-time finite element approxi- 102. T. Götz, A. Klar, N. Marheineke, R. Wegener Keywords: two-grid algorithm, oscillating coefficients, mation, stability and a priori estimate A Stochastic Model for the Fiber Lay-down preconditioner (24 pages, 2006) Process in the Nonwoven Production (20 pages, 2007) Keywords: fiber dynamics, stochastic Hamiltonian sys- 93. V. Rutka, A. Wiegmann, H. Andrä tem, stochastic averaging 112. L. Bonilla, T. Götz, A. Klar, N. Marheineke, (17 pages, 2006) EJIIM for Calculation of effective Elastic R. Wegener Moduli in 3D Linear Elasticity Hydrodynamic limit of the Fokker-Planck- Keywords: Elliptic PDE, linear elasticity, irregular do- 103. Ph. Süss, K.-H. Küfer equation describing fiber lay-down pro- main, finite differences, fast solvers, effective elas- Balancing control and simplicity: a variable cesses tic moduli aggregation method in intensity modulated Keywords: stochastic dierential equations, Fokker- (24 pages, 2006) radiation therapy planning Planck equation, asymptotic expansion, Ornstein- Keywords: IMRT planning, variable aggregation, clus- Uhlenbeck process 94. A. Wiegmann, A. Zemitis tering methods (17 pages, 2007) EJ-HEAT: A Fast Explicit Jump ­Harmonic (22 pages, 2006) ­Averaging Solver for the Effective Heat 113. S. Rief Conductivity of Composite Materials 104. A. Beaudry, G. Laporte, T. Melo, S. Nickel Modeling and simulation of the pressing Keywords: Stationary heat equation, effective ther- Dynamic transportation of patients in hos- section of a paper machine mal conductivity, explicit jump, discontinuous coeffi- pitals Keywords: paper machine, computational fluid dynam- cients, virtual material design, microstructure simula- Keywords: in-house hospital transportation, dial-a-ride, ics, porous media tion, EJ-HEAT dynamic mode, tabu search (41 pages, 2007) (21 pages, 2006) (37 pages, 2006) 114. R. Ciegis, O. Iliev, Z. Lakdawala 95. A. Naumovich 105. Th. Hanne On parallel numerical algorithms for simu- On a finite volume discretization of the Applying multiobjective evolutionary algo- lating industrial filtration problems three-dimensional Biot poroelasticity sys- rithms in industrial projects Keywords: Navier-Stokes-Brinkmann equations, finite tem in multilayered domains Keywords: multiobjective evolutionary algorithms, dis- volume discretization method, SIMPLE, parallel comput- Keywords: Biot poroelasticity system, interface problems, crete optimization, continuous optimization, electronic ing, data decomposition method finite volume discretization, finite difference method circuit design, semi-infinite programming, scheduling (24 pages, 2007) (21 pages, 2006) (18 pages, 2006) 115. N. Marheineke, R. Wegener 96. M. Krekel, J. Wenzel 106. J. Franke, S. Halim Dynamics of curved viscous fibers with sur- A unified approach to Credit Default Swap­ Wild bootstrap tests for comparing signals face tension tion and Constant Maturity Credit Default and images Keywords: Slender body theory, curved viscous bers Swap valuation Keywords: wild bootstrap test, texture classification, with surface tension, free boundary value problem Keywords: LIBOR market model, credit risk, Credit De- textile quality control, defect detection, kernel estimate, (25 pages, 2007) fault Swaption, Constant Maturity Credit Default Swap- nonparametric regression method (13 pages, 2007) 116. S. Feth, J. Franke, M. Speckert (43 pages, 2006) Resampling-Methoden zur mse-Korrektur 107. Z. Drezner, S. Nickel und Anwendungen in der Betriebsfestigkeit 97. A. Dreyer Solving the ordered one-median problem in Keywords: Weibull, Bootstrap, Maximum-Likelihood, Interval Methods for Analog Circiuts the plane Betriebsfestigkeit Keywords: interval arithmetic, analog circuits, tolerance Keywords: planar location, global optimization, ordered (16 pages, 2007) analysis, parametric linear systems, frequency response, median, big triangle small triangle method, bounds, symbolic analysis, CAD, computer algebra numerical experiments 117. H. Knaf (36 pages, 2006) (21 pages, 2007) Kernel Fisher discriminant functions – a con- cise and rigorous introduction 98. N. Weigel, S. Weihe, G. Bitsch, K. Dreßler 108. Th. Götz, A. Klar, A. Unterreiter, Keywords: wild bootstrap test, texture classification, Usage of Simulation for Design and Optimi- R. Wegener textile quality control, defect detection, kernel estimate, zation of Testing Numerical evidance for the non-­existing of nonparametric regression Keywords: Vehicle test rigs, MBS, control, hydraulics, solutions of the equations desribing rota- (30 pages, 2007) testing philosophy tional fiber spinning (14 pages, 2006) Keywords: rotational fiber spinning, viscous fibers, 118. O. Iliev, I. Rybak boundary value problem, existence of solutions On numerical upscaling for flows in hetero- 99. H. Lang, G. Bitsch, K. Dreßler, M. Speckert (11 pages, 2007) geneous porous media Comparison of the solutions of the elastic and elastoplastic boundary value problems Keywords: numerical upscaling, heterogeneous porous 128. M. Krause, A. Scherrer 137. E. Savenkov, H. Andrä, O. Iliev∗ media, single phase flow, Darcy‘s law, multiscale prob- On the role of modeling parameters in IMRT An analysis of one regularization approach lem, effective permeability, multipoint flux approxima- plan optimization for solution of pure Neumann problem tion, anisotropy Keywords: intensity-modulated radiotherapy (IMRT), Keywords: pure Neumann problem, elasticity, regular- (17 pages, 2007) inverse IMRT planning, convex optimization, sensitiv- ization, finite element method, condition number ity analysis, elasticity, modeling parameters, equivalent (27 pages, 2008) 119. O. Iliev, I. Rybak uniform dose (EUD) (18 pages, 2007) On approximation property of multipoint 138. O. Berman, J. Kalcsics, D. Krass, S. Nickel flux approximation method The ordered gradual covering location Keywords: Multipoint flux approximation, finite volume 129. A. Wiegmann problem on a network method, elliptic equation, discontinuous tensor coeffi- Computation of the ­permeability of porous Keywords: gradual covering, ordered median function, cients, anisotropy materials from their microstructure by FFF- network location (15 pages, 2007) Stokes (32 pages, 2008) Keywords: permeability, numerical homogenization, 120. O. Iliev, I. Rybak, J. Willems fast Stokes solver 139. S. Gelareh, S. Nickel (24 pages, 2007) On upscaling heat conductivity for a class of Multi-period public transport ­design: A industrial problems novel model and solution approaches­ Keywords: Multiscale problems, effective heat conduc- 130. T. Melo, S. Nickel, F. Saldanha da Gama Keywords: Integer programming, hub location, public tivity, numerical upscaling, domain decomposition Facility Location and Supply Chain Manage- transport, multi-period planning, heuristics (21 pages, 2007) ment – A comprehensive review (31 pages, 2008) Keywords: facility location, supply chain management, 121. R. Ewing, O. Iliev, R. Lazarov, I. Rybak network design 140. T. Melo, S. Nickel, F. Saldanha-da-Gama (54 pages, 2007) On two-level preconditioners for flow in Network design decisions in supply chain porous media planning Keywords: Multiscale problem, Darcy‘s law, single 131. T. Hanne, T. Melo, S. Nickel Keywords: supply chain design, integer programming phase flow, anisotropic heterogeneous porous media, Bringing robustness to patient flow models, location models, heuristics numerical upscaling, multigrid, domain decomposition, manage­ment through optimized patient (20 pages, 2008) efficient preconditioner (18 pages, 2007) transports in hospitals Keywords: Dial-a-Ride problem, online problem, case 141. C. Lautensack, A. Särkkä, J. Freitag, study, tabu search, hospital logistics K. Schladitz 122. M. Brickenstein, A. Dreyer (23 pages, 2007) POLYBORI: A Gröbner basis framework Anisotropy analysis of pressed point pro- cesses for Boolean polynomials 132. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, Keywords: Gröbner basis, formal verification, Boolean Keywords: estimation of compression, isotropy test, J. Willems polynomials, algebraic cryptoanalysis, satisfiability nearest neighbour distance, orientation analysis, polar (23 pages, 2007) An efficient approach for upscaling proper- ice, Ripley’s K function ties of composite materials with high con- (35 pages, 2008) trast of coefficients 123. O. Wirjadi Keywords: effective heat conductivity, permeability of 142. O. Iliev, R. Lazarov, J. Willems Survey of 3d image segmentation methods fractured porous media, numerical upscaling, fibrous A Graph-Laplacian approach for calculating Keywords: image processing, 3d, image segmentation, insulation materials, metal foams the effective thermal conductivity of com- binarization (16 pages, 2008) (20 pages, 2007) plicated fiber geometries Keywords: graph laplacian, effective heat conductivity, 133. S. Gelareh, S. Nickel numerical upscaling, fibrous materials 124. S. Zeytun, A. Gupta New approaches to hub location problems (14 pages, 2008) A Comparative Study of the Vasicek and the in public transport planning CIR Model of the Short Rate Keywords: integer programming, hub location, trans- 143. J. Linn, T. Stephan, J. Carlsson, R. Bohlin Keywords: interest rates, , CIR-model, portation, decomposition, heuristic Fast simulation of quasistatic rod deforma- calibration, parameter estimation (25 pages, 2008) (17 pages, 2007) tions for VR applications Keywords: quasistatic deformations, geometrically 134. G. Thömmes, J. Becker, M. Junk, A. K. Vai- exact rod models, variational formulation, energy min- 125. G. Hanselmann, A. Sarishvili kuntam, D. Kehrwald, A. Klar, K. Steiner, imization, finite differences, nonlinear conjugate gra- Heterogeneous redundancy in software A. Wiegmann dients quality prediction using a hybrid Bayesian A Lattice Boltzmann Method for immiscible (7 pages, 2008) approach multiphase flow simulations using the­Level Keywords: reliability prediction, fault prediction, non- Set Method 144. J. Linn, T. Stephan homogeneous poisson process, Bayesian model aver- Keywords: Lattice Boltzmann method, Level Set aging Simulation of quasistatic deformations us- method, free surface, multiphase flow (17 pages, 2007) ing discrete rod models (28 pages, 2008) Keywords: quasistatic deformations, geometrically exact rod models, variational formulation, energy min- 126. V. Maag, M. Berger, A. Winterfeld, K.-H. 135. J. Orlik imization, finite differences, nonlinear conjugate gra- Küfer Homogenization in elasto-plasticity dients (9 pages, 2008) A novel non-linear approach to minimal Keywords: multiscale structures, asymptotic homogeni- area rectangular packing zation, nonlinear energy Keywords: rectangular packing, non-overlapping con- (40 pages, 2008) 145. J. Marburger, N. Marheineke, R. Pinnau straints, non-linear optimization, regularization, relax- Adjoint based optimal control using mesh- ation (18 pages, 2007) 136. J. Almquist, H. Schmidt, P. Lang, J. Deitmer, less discretizations M. Jirstrand, D. Prätzel-Wolters, H. Becker Keywords: Mesh-less methods, particle methods, Eul- Determination of interaction between erian-Lagrangian formulation, optimization strategies, 127. M. Monz, K.-H. Küfer, T. Bortfeld, C. Thieke adjoint method, hyperbolic equations MCT1 and CAII via a mathematical and Pareto navigation – systematic multi-crite- (14 pages, 2008 physiological approach ria-based IMRT treatment plan determina- Keywords: mathematical modeling; model reduction; tion electrophysiology; pH-sensitive microelectrodes; pro- 146. S. Desmettre, J. Gould, A. Szimayer Keywords: convex, interactive multi-objective optimiza- ton antenna Own-company stockholding and work effort tion, intensity modulated radiotherapy planning (20 pages, 2008) preferences of an unconstrained executive (15 pages, 2007) Keywords: optimal portfolio choice, executive compen- sation (33 pages, 2008) 147. M. Berger, M. Schröder, K.-H. Küfer Keywords: Fiber-fluid interaction, slender-body theory, 166. J. I. Serna, M. Monz, K.-H. Küfer, C. Thieke A constraint programming approach for the turbulence modeling, model reduction, stochastic dif- Trade-off bounds and their effect in multi- two-dimensional rectangular packing prob- ferential equations, Fokker-Planck equation, asymptotic criteria IMRT planning expansions, parameter identification lem with orthogonal orientations Keywords: trade-off bounds, multi-criteria optimization, (21 pages, 2009) Keywords: rectangular packing, orthogonal orienta- IMRT, Pareto surface tions non-overlapping constraints, constraint propa- (15 pages, 2009) gation 157. E. Glatt, S. Rief, A. Wiegmann, M. Knefel, (13 pages, 2008) E. Wegenke 167. W. Arne, N. Marheineke, A. Meister, R. We- Structure and pressure drop of real and vir- gener 148. K. Schladitz, C. Redenbach, T. Sych, tual metal wire meshes Numerical analysis of Cosserat rod and M. Godehardt Keywords: metal wire mesh, structure simulation, string models for viscous jets in rotational model calibration, CFD simulation, pressure loss Microstructural characterisation of open spinning processes (7 pages, 2009) foams using 3d images Keywords: Rotational spinning process, curved viscous Keywords: virtual material design, image analysis, open fibers, asymptotic Cosserat models, boundary value foams 158. S. Kruse, M. Müller problem, existence of numerical solutions (30 pages, 2008) Pricing American call options under the as- (18 pages, 2009) sumption of stochastic dividends – An ap- 149. E. Fernández, J. Kalcsics, S. Nickel, plication of the Korn-Rogers model 168. T. Melo, S. Nickel, F. Saldanha-da-Gama R. Ríos-Mercado Keywords: option pricing, American options, dividends, An LP-rounding heuristic to solve a multi- A novel territory design model arising in dividend discount model, Black-Scholes model period facility relocation problem (22 pages, 2009) the implementation of the WEEE-Directive Keywords: supply chain design, heuristic, linear pro- Keywords: heuristics, optimization, logistics, recycling gramming, rounding (28 pages, 2008) 159. H. Lang, J. Linn, M. Arnold (37 pages, 2009) Multibody dynamics simulation of geomet- 150. H. Lang, J. Linn rically exact Cosserat rods 169. I. Correia, S. Nickel, F. Saldanha-da-Gama Lagrangian field theory in space-time for Keywords: flexible multibody dynamics, large deforma- Single-allocation hub location problems tions, finite rotations, constrained mechanical systems, geometrically exact Cosserat rods with capacity choices structural dynamics Keywords: Cosserat rods, geometrically exact rods, Keywords: hub location, capacity decisions, MILP for- (20 pages, 2009) small strain, large deformation, deformable bodies, mulations Lagrangian field theory, variational calculus (27 pages, 2009) (19 pages, 2009) 160. P. Jung, S. Leyendecker, J. Linn, M. Ortiz Discrete Lagrangian mechanics and geo- 170. S. Acar, K. Natcheva-Acar 151. K. Dreßler, M. Speckert, R. Müller, metrically exact Cosserat rods A guide on the implementation of the Ch. Weber Keywords: special Cosserat rods, Lagrangian mechanics, Heath-Jarrow-Morton Two-Factor Gaussian Noether’s theorem, discrete mechanics, frame-indiffer- Customer loads correlation in truck engi- Short Rate Model (HJM-G2++) ence, holonomic constraints Keywords: short rate model, two factor Gaussian, neering (14 pages, 2009) Keywords: Customer distribution, safety critical compo- G2++, option pricing, calibration nents, quantile estimation, Monte-Carlo methods (30 pages, 2009) (11 pages, 2009) 161. M. Burger, K. Dreßler, A. Marquardt, M. Speckert 152. H. Lang, K. Dreßler Calculating invariant loads for system simu- An improved multiaxial stress-strain correc- lation in vehicle engineering Keywords: iterative learning control, optimal control Status quo: July 2009 tion model for elastic FE postprocessing theory, differential algebraic equations(DAEs) Keywords: Jiang’s model of elastoplasticity, stress-strain (18 pages, 2009) correction, parameter identification, automatic differ- entiation, least-squares optimization, Coleman-Li algo- rithm 162. M. Speckert, N. Ruf, K. Dreßler (6 pages, 2009) Undesired drift of multibody models excit- ed by measured accelerations or forces 153. J. Kalcsics, S. Nickel, M. Schröder Keywords: multibody simulation, full vehicle model, A generic geometric approach to territory force-based simulation, drift due to noise (19 pages, 2009) design and districting Keywords: Territory design, districting, combinatorial optimization, heuristics, computational geometry 163. A. Streit, K. Dreßler, M. Speckert, J. Lichter, (32 pages, 2009) T. Zenner, P. Bach Anwendung statistischer Methoden zur 154. Th. Fütterer, A. Klar, R. Wegener Erstellung von Nutzungsprofilen für die An energy conserving numerical scheme for Auslegung von Mobilbaggern the dynamics of hyper­elastic rods Keywords: Nutzungsvielfalt, Kundenbeanspruchung, Keywords: Cosserat rod, hyperealstic, energy conserva- Bemessungsgrundlagen tion, finite differences (13 pages, 2009) (16 pages, 2009) 164. I. Correia, S. Nickel, F. Saldanha-da-Gama 155. A. Wiegmann, L. Cheng, E. Glatt, O. Iliev, Anwendung statistischer Methoden zur Er- S. Rief stellung von Nutzungsprofilen für die Design of pleated filters by computer sim- Auslegung von Mobilbaggern ulations Keywords: Capacitated Hub Location, MIP formulations Keywords: Solid-gas separation, solid-liquid separation, (10 pages, 2009) pleated filter, design, simulation (21 pages, 2009) 165. F. Yaneva, T. Grebe, A. Scherrer An alternative view on global radiotherapy 156. A. Klar, N. Marheineke, R. Wegener optimization problems Hierarchy of mathematical models for pro- Keywords: radiotherapy planning, path-connected sub- duction processes of technical textiles levelsets, modified gradient projection method, improv- ing and feasible directions (14 pages, 2009)