An Overview of Hypoglycemia in Children Including a Comprehensive Practical Diagnostic Flowchart for Clinical Use
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hepatic Glycogen Storage Diseases: Pathogenesis, Clinical Symptoms and Therapeutic Management
State of the art paper Hepatology Hepatic glycogen storage diseases: pathogenesis, clinical symptoms and therapeutic management Edyta Szymańska1, Dominika A. Jóźwiak-Dzięcielewska2, Joanna Gronek2, Marta Niewczas3, Wojciech Czarny4, Dariusz Rokicki1, Piotr Gronek2 1Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Corresponding author: The Children’s Memorial Health Institute, Warsaw, Poland Edyta Szymańska MD, PhD 2Laboratory of Genetics, Department of Gymnastics and Dance, University School Department of Physical Education, Poznan, Poland of Gastroenterology, 3Department of Sport, Faculty of Physical Education, University of Rzeszow, Rzeszow, Hepatology, Feeding Poland Disorders and 4Department of Human Sciences, Faculty of Physical Education, University of Rzeszow, Pediatrics Rzeszow, Poland The Children’s Memorial Health Institute Submitted: 13 October 2017; Accepted: 8 December 2017; Al. Dzieci Polskich 20 Online publication: 18 February 2019 Warsaw, Poland Phone: +48 22 815 74 94 Arch Med Sci 2021; 17 (2): 304–313 E-mail: edyta.szymanska@ DOI: https://doi.org/10.5114/aoms.2019.83063 ipczd.pl Copyright © 2019 Termedia & Banach Abstract Glycogen storage diseases (GSDs) are genetically determined metabolic diseases that cause disorders of glycogen metabolism in the body. Due to the enzymatic defect at some stage of glycogenolysis/glycogenesis, excess glycogen or its pathologic forms are stored in the body tissues. The first symptoms of the disease usually appear during the first months of life and are thus the domain of pediatricians. Due to the fairly wide access of the authors to unpublished materials and research, as well as direct contact with the GSD patients, the article addresses the problem of actual diag- nostic procedures for patients with the suspected diseases. -
Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells. -
What Is Ketotic Hypoglycemia?
KETOTICHYPOGLYCEMIA.ORGv Ketotic Hypoglycemia International Who we are, what we do and why Ketotic Hypoglycemia INTERNATIONAL What is ketotic hypoglycemia? “Ketotic hypoglycemia may be unexplained, or idiopathic (IKH). This is a challenge and should urge for more research” For the patients In a normal person, fuel for the brain and the general cell metabolism primarily comes from the burning of sugar deposits (glycogen). When the glycogen stores are depleted, the body will switch to burn fat deposits. The fat burn lead to two fuels for the brain, both glucose (sugar) and ketone bodies. However, ketones in the blood will lead to nausea and eventually vomiting. This will lead to a vicious circle, where you cannot eat or drink sugar-rich items, which again leads to further fat burn and production of ketone bodies. In a KH-patient, the glycogen stores are somehow insufficient. This leads to For the doctors decreased fasting tolerance with earlier Ketotic hypoglycemia can be seen in children Emergency treatment constitutes of oral onset of fat burn and hence ketone bodies. In because of growth hormone deficiency, cortisol or i.v. glucose, eventually i.m. glucagon, to most patients, the hypoglycemia is relatively deficiency, metabolic diseases with intact fatty raise the plasma glucose, which will prevent mild, and the ketone bodies helps to provide acid consumption, including glycogen storage further lipolysis. However, the ketones can fuel to the brain, which prevents loss of diseases (glycogenosis; GSD) type 0, III, VI, and take hours to be eliminated. In more severely consciousness and convulsions. However, in IX, or disturbances in transport or metabolism affected patients, the ketone production relatively few patients, the condition is more of ketone bodies. -
Reciprocal Regulation of TEAD4 and CCN2 for the Trophectoderm Development of the Bovine Blastocyst
155 6 REPRODUCTIONRESEARCH Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst Hiroki Akizawa1,2, Ken Kobayashi3, Hanako Bai1, Masashi Takahashi1, Shinjiro Kagawa1, Hiroaki Nagatomo1,† and Manabu Kawahara1 1Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan, 2Japan Society for the Promotion of Science (JSPS Research Fellow), Tokyo, Japan and 3Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan Correspondence should be addressed to M Kawahara; Email: [email protected] †(Hiroaki Nagatomo is now at Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan) Abstract The first segregation at the blastocyst stage is the symmetry-breaking event to characterize two cell components; namely, inner cell mass (ICM) and trophectoderm (TE). TEA domain transcription factor 4 (TEAD4) is a well-known regulator to determine TE properties of blastomeres in rodent models. However, the roles of bovine TEAD4 in blastocyst development have been unclear. We here aimed to clarify the mechanisms underlining TE characterization by TEAD4 in bovine blastocysts. We first found that the TEAD4 mRNA expression level was greater in TE than in ICM, which was further supported by TEAD4 immunofluorescent staining. Subsequently, we examined the expression patterns of TE-expressed genes; CDX2, GATA2 and CCN2, in the TEAD4-knockdown (KD) blastocysts. These expression levels significantly decreased in the TEAD4 KD blastocysts compared with controls. Of these downregulated genes, the CCN2 expression level decreased the most. We further analyzed the expression levels of TE-expressed genes; CDX2, GATA2 and TEAD4 in the CCN2 KD blastocysts. -
Maximizing Diagnostic Value & Efficiency for Abnormal Lfts in The
Maximizing Diagnostic Value & Efficiency for Abnormal LFTs in the Primary Care Setting Michael Kriss, MD Assistant Professor Associate Program Director, Transplant Hepatology Fellowship Division of Gastroenterology & Hepatology Section of Liver Disease & Transplantation University of Colorado School of Medicine Disclosures No conflicts of interest to disclose Learning Objectives At the completion of today’s talk, physicians will: 1. Recognize high value practices in evaluating and referring patients with abnormal liver enzymes 2. Identify essential components of the diagnostic evaluation of abnormal liver enzymes 3. Apply high value principles to complex patients requiring co-management by liver specialists https://www.ncbi.nlm.nih.gov/pubmed/27995906 https://www.ncbi.nlm.nih.gov/pubmed/27995906 Alcoholic liver disease Hepatitis B virus Primary biliary cholangitis NAFLD/NASH Hepatitis C virus Primary sclerosing cholangitis Autoimmune hepatitis Hemochromatosis Wilson’s disease https://www.aasld.org/publications/practice-guidelines What is normal…? ACG 2016 Guidelines “A true healthy normal ALT level in prospectively studied populations without identifiable risk factors for liver disease ranges from 29 to 33 IU/l for males and 19 to 25 IU/l for females, and levels above this should be assessed by physicians” “Clinicians may rely on local lab ULN ranges for alkaline phosphatase and bilirubin” Kwo PY et al. ACG Practice Guideline: Evaluation of Abnormal Liver Chemistries. AJG 2017 Critical to characterize pattern… Abnormal LFT 101 Hepatocellular Mixed Cholestatic AST/ALT Alk Phos Hyperbilirubinemia Bilirubin Kwo PY et al. ACG Practice Guideline: Evaluation of Abnormal Liver Chemistries. AJG 2017 Critical to characterize pattern… Abnormal LFT 101 ALT AP R = ALT ULN / AP ULN Hepatocellular Mixed Cholestatic AST/ALT R=2-5 Alk Phos R>5 R<2 Hyperbilirubinemia Bilirubin Kwo PY et al. -
A New Tool for the Diagnosis of Choledocholithiasis. a Case Control Study
DOI: https://doi.org/10.22516/25007440.446 Original article Elevated transaminases: a new tool for the diagnosis of choledocholithiasis. A case control study James Yurgaky-Sarmiento, MD,1 William Otero-Regino, MD,2* Martín Gómez-Zuleta, MD.3 Abstract OPEN ACCESS Introduction: Choledocolithiasis (CLD) affects 10% of patients with gallstones. Citation: Bile duct obstruction is associated with pancreatitis, cholangitis, and rupture of Yurgaky-Sarmiento J, Otero-Regino W, Gómez-Zuleta M. Elevated transaminases: a new tool the common bile duct. This condition usually presents with increased alkaline for the diagnosis of choledocholithiasis. A case control study. Un estudio de casos y controles. Rev Colomb Gastroenterol. 2020;35(3):319-328. https://doi.org/10.22516/25007440.446 phosphatase, GGTP and bilirubin levels. In the last decade, it has been found that up to 10% of patients with CLD have elevated aminotransferases levels. ............................................................................ In Latin America, this alteration has not been studied. The aim of the present 1 Internist, endocrinologist, gastroenterologist, Universidad Nacional de Colombia; Bogotá, work was to determine the prevalence of transaminase elevation and its evo- Colombia. lution. Methodology: Case-control study. ALT was measured on admission, 2 Professor of Medicine, Gastroenterology Coordinator, Universidad Nacional de Colombia, at 48 h and at 72 h. If ultrasound was normal, MRCP and/or echo-endoscopy Hospital Universitario Nacional de Colombia. Gastroenterologist, Clínica Fundadores; Bogotá, and ERCP were performed, as appropriate. Results: A total of 72 patients with Colombia. 3 Associate Professor of Medicine, Gastroenterology Unit, Universidad Nacional de Colombia, choledocholithiasis (CLD) (cases) and 128 with cholecystitis without choledo- Hospital Universitario Nacional de Colombia. -
Regulation of the Tumor Suppressor Homeogene Cdx2 by Hnf4a in Intestinal Cancer
Oncogene (2013) 32, 3782–3788 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc SHORT COMMUNICATION Regulation of the tumor suppressor homeogene Cdx2 by HNF4a in intestinal cancer T Saandi1,2, F Baraille3,4,5, L Derbal-Wolfrom1,2, A-L Cattin3,4,5, F Benahmed1,6, E Martin1,2, P Cardot3,4,5, B Duclos1,2,7, A Ribeiro3,4,5, J-N Freund1,2,8 and I Duluc1,2,8 The gut-specific homeotic transcription factor Cdx2 is a crucial regulator of intestinal development and homeostasis, which is downregulated in colorectal cancers (CRC) and exhibits a tumor suppressor function in the colon. We have previously established that several endodermal transcription factors, including HNF4a and GATA6, are involved in Cdx2 regulation in the normal gut. Here we have studied the role of HNF4a in the mechanism of deregulation of Cdx2 in colon cancers. Crossing ApcD14/ þ mice prone to spontaneous intestinal tumor development with pCdx2-9LacZ transgenic mice containing the LacZ reporter under the control of the 9.3-kb Cdx2 promoter showed that this promoter segment contains sequences recapitulating the decrease of Cdx2 expression in intestinal cancers. Immunohistochemistry revealed that HNF4a, unlike GATA6, exhibited a similar decrease to Cdx2 in genetic (Apcmin/ þ and ApcD14/ þ ) and chemically induced (Azoxymethane (AOM) treatment) models of intestinal tumors in mice. HNF4a and Cdx2 also exhibited a comparable deregulated pattern in human CRC. Correlated patterns were observed between HNF4a and Cdx2 in several experimental models of human colon cancer cell lines: xenografts in nude mice, wound healing and glucose starvation. -
Cardiomyopathy Precision Panel Overview Indications
Cardiomyopathy Precision Panel Overview Cardiomyopathies are a group of conditions with a strong genetic background that structurally hinder the heart to pump out blood to the rest of the body due to weakness in the heart muscles. These diseases affect individuals of all ages and can lead to heart failure and sudden cardiac death. If there is a family history of cardiomyopathy it is strongly recommended to undergo genetic testing to be aware of the family risk, personal risk, and treatment options. Most types of cardiomyopathies are inherited in a dominant manner, which means that one altered copy of the gene is enough for the disease to present in an individual. The symptoms of cardiomyopathy are variable, and these diseases can present in different ways. There are 5 types of cardiomyopathies, the most common being hypertrophic cardiomyopathy: 1. Hypertrophic cardiomyopathy (HCM) 2. Dilated cardiomyopathy (DCM) 3. Restrictive cardiomyopathy (RCM) 4. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 5. Isolated Left Ventricular Non-Compaction Cardiomyopathy (LVNC). The Igenomix Cardiomyopathy Precision Panel serves as a diagnostic and tool ultimately leading to a better management and prognosis of the disease. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes. Indications The Igenomix Cardiomyopathy Precision Panel is indicated in those cases where there is a clinical suspicion of cardiomyopathy with or without the following manifestations: - Shortness of breath - Fatigue - Arrythmia (abnormal heart rhythm) - Family history of arrhythmia - Abnormal scans - Ventricular tachycardia - Ventricular fibrillation - Chest Pain - Dizziness - Sudden cardiac death in the family 1 Clinical Utility The clinical utility of this panel is: - The genetic and molecular diagnosis for an accurate clinical diagnosis of a patient with personal or family history of cardiomyopathy, channelopathy or sudden cardiac death. -
Role of Cdx Factors in Early Mesodermal Fate Decisions Tanya E
© 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev170498. doi:10.1242/dev.170498 RESEARCH ARTICLE Role of Cdx factors in early mesodermal fate decisions Tanya E. Foley, Bradley Hess, Joanne G. A. Savory, Randy Ringuette and David Lohnes* ABSTRACT Cdx1−/− or Cdx2+/− phenotypes, indicative of functional overlap Murine cardiac and hematopoietic progenitors are derived from Mesp1+ between Cdx family members (Faas and Isaacs, 2009; Savory et al., mesoderm. Cdx function impacts both yolk sac hematopoiesis and 2011; van den Akker et al., 2002; van Nes et al., 2006; Young et al., Cdx2 cardiogenesis in zebrafish, suggesting that Cdx family members 2009). The derivation and analysis of conditional mutants regulate early mesoderm cell fate decisions. We found that Cdx2 (Savory et al., 2009a; Stringer et al., 2012) and compound mutant occupies a number of transcription factor loci during embryogenesis, derivatives (van den Akker et al., 2002; Savory et al., 2011; Verzi including key regulators of both cardiac and blood development, and et al., 2011; van Rooijen et al., 2012; Stringer et al., 2012; Grainger that Cdx function is required for normal expression of the cardiogenic et al., 2010; Hryniuk et al., 2012) further substantiated the transcription factors Nkx2-5 and Tbx5. Furthermore, Cdx and Brg1, an functional overlap between family members. Analysis of these ATPase subunit of the SWI/SNF chromatin remodeling complex, co- mutants also revealed a requirement for Cdx genes in diverse occupy a number of loci, suggesting that Cdx family members regulate processes in development and in the adult intestinal track. These target gene expression through alterations in chromatin architecture. -
Recurrent Severe Hypoglycemia Due to Isolated Growth Hormone
C O R R E S P O N D E N C E Recurrent Severe Hypoglycemia hyperinsulinism, ketotic hypoglycemia and hormonal deficiencies such as cortisol, GH and thyroxine [1]. GH due to Isolated Growth Hormone deficiency may occasionally manifest as recurrent Deficiency hypoglycemia as seen in our patient. The mechanisms of hypoglycemia in GH deficiency are increased insulin sensitivity and hypoglycemia unawareness [2]. Additionally, GH deficiency impairs carbohydrate meta- A 6-year-old boy presented to us with repeated episodes bolism resulting in deceased basal insulin level, impaired of seizures since early infancy. He was born small for insulin secretion and carbohydrate intolerance with gestational age to non-consanguineous parents at term. reactive hypoglycemia [1,2]. Although hypoglycemia is During neonatal period, he suffered multiple episodes of described in GH deficiency, severe symptomatic hypoglycemia requiring intravenous dextrose but no hypoglycemia is extremely rare and usually occurs in etiological investigations were done. Three of the four association with another causative factor such as hypoglycemic events beyond neonatal age were glycogen storage disorder [3,4]. Children with even associated with seizures. There were no precipitating complete GH deficiency do not usually manifest factors for hypoglycemia such as prolonged fasting, an hypoglycemia [5]. Our patient unusually developed intercurrent illness or intake of medications. There was recurrent episodes of severe symptomatic hypoglycemia no family history of similar illness, metabolic disorders or due to an isolated GH deficiency. an unexplained death. DEVI DAYAL AND JAIVINDER Y ADAV* On examination, he was short (106 cm, -2.02 z-score) Department of Pediatrics, and underweight (13.8 kg, -3.15 z-score) and had normal PGIMER, Chandigarh, India. -
Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome
Pediatr. Res. 17: 157-161 (1983) Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome M. BRIVET,"" N. MOATTI, A. CORRIAT, A. LEMONNIER, AND M. ODIEVRE Laboratoire Central de Biochimie du Centre Hospitalier de Bichre, 94270 Kremlin-Bicetre, France [M. B., A. C.]; Faculte des Sciences Pharmaceutiques et Biologiques de I'Universite Paris-Sud, 92290 Chatenay-Malabry, France [N. M., A. L.]; and Faculte de Midecine de I'Universiti Paris-Sud et Unite de Recherches d'Hepatologie Infantile, INSERM U 56, 94270 Kremlin-Bicetre. France [M. 0.1 Summary The patient's diet was supplemented with 25-OH-cholecalci- ferol, phosphorus, calcium, and bicarbonate. With this treatment, Carbohydrate metabolism was studied in a child with atypical the serum phosphate concentration increased, but remained be- glycogen storage disease and Fanconi syndrome. Massive gluco- tween 0.8 and 1.0 mmole/liter, whereas the plasma carbon dioxide suria, partial resistance to glucagon and abnormal responses to level returned to normal (18-22 mmole/liter). Rickets was only carbohydrate loads, mainly in the form of major impairment of partially controlled. galactose utilization were found, as reported in previous cases. Increased blood lactate to pyruvate ratios, observed in a few cases of idiopathic Fanconi syndrome, were not present. [l-14ClGalac- METHODS tose oxidation was normal in erythrocytes, but reduced in fresh All studies of the patient and of the subjects who served as minced liver tissue, despite normal activities of hepatic galactoki- controls were undertaken after obtaining parental or personal nase, uridyltransferase, and UDP-glucose 4epirnerase in hornog- consent. enates of frozen liver. -
Improvement of the Nutritional Management of Glycogen Storage Disease Type I
1 Improvement of the nutritional management of glycogen storage disease type I Kaustuv Bhattacharya Presented for the degree of MD (res) at University College London 2 “The roots below the earth claim no rewards for making the branches fruitful” Sir Rabrindranath Tagore Stray Birds (1917) Acknowledgements Whilst this thesis is my own work, it is the product of several helpful discussions with many people around the world. It was conducted under the supervision of Philip Lee who, since completion of the data collection, faced bigger personal challenges than he could have imagined. I hope that this work is a fitting conclusion to one strategic direction, of some of his research, which I hope he can be proud of. I am very grateful for his help. Peter Clayton has been a source of inspiration throughout my “metabolic” career and his guidance throughout this process has been very gratefully received. I appreciate the tolerance of my other colleagues at Queen Square and Great Ormond Street Hospital that have accommodated in different ways. The dietetic experience of Maggie Lilburn has been invaluable to this work. Simon Eaton has helped tremendously with performing the assays in chapter 5. I would also like to thank, David Morley, Amy Cole, Martin Christian, and Bridget Wilcken for their constructive thoughts. None of this work would have been possible without the Murphy family’s generous support. I thank the Dromintee Trust for keeping me in worthwhile employment. I would like to thank the patients who volunteered and gave me so much of their time. The Association for Glycogen Storage Disease (UK), Glycologic Ltd and Vitaflo Ltd have also sponsored these trials and hopefully facilitated a better experience for patients.