Toward an Empirical Theory of Pulsar Emission Xi

Total Page:16

File Type:pdf, Size:1020Kb

Toward an Empirical Theory of Pulsar Emission Xi Draft version February 18, 2015 A Preprint typeset using LTEX style emulateapj v. 05/12/14 TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION XI. UNDERSTANDING THE ORIENTATIONS OF PULSAR RADIATION AND SUPERNOVA “KICKS” Joanna M. Rankin Physics Department, University of Vermont, Burlington, VT 05405 USA: [email protected] Draft version February 18, 2015 ABSTRACT Two entwined problems have remained unresolved since pulsars were discovered nearly 50 years ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova “kicks’ relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (“fiducial’) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is k to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both k or ⊥ alignments. In this paper we analyze the some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions. The “fiducial’ polarization angle of the core emission, we then find, is usually oriented ⊥ to the proper-motion direction on the sky. As the primary core emission is polarized ⊥ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation, this shows that the proper motions usually lie k to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova “kicks’ are responsible for pulsar proper motions, they are mostly k to the rotation axis; and second that most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude “parent’ core emission is polarized ⊥ to the emitting field, propagating as the extraordinary (X) mode. Keywords: pulsars: general — techniques: polarimetric; emission mechanisms: non-thermal 1. INTRODUCTION tion modes [Backer & Rankin (1980); Manchester et al. Radio pulsars now contribute importantly to many (1975)] many assumed in the absence of any direct proof fields of physical science, but paradoxically, two funda- that the “primary” polarization mode must be k. mental coupled issues have remained unresolved since This easy presumption was dashed in the new millen- they were discovered 47 years ago: the orientation of nium by X-ray imaging of the Vela pulsar [Helfand et al. their linearly polarized emission relative to the mag- (2001); Radhakrishnan & Deshpande (2001)] where arcs netic field in their polar fluxtube emitting regions and indicated the orientation of the star’s rotation axis Ω rel- the origin/orientation of their often large space veloci- ative to its polarization and proper-motion (PM) direc- ties (and thus proper motions) relative to their rotation tions. Shockingly, the radiation was polarized ⊥ to the axes. Most pulsars are known only by their lighthouse- projected magnetic field B plane, a circumstance then like radio signals, and thus we have no direct means of beautifully confirmed for the radio emission (Johnston determining the orientation of a pulsar’s rotation axis et al. 2005, hereafter Johnston I)—and this pulsar’s ra- on the sky, which is crucial both to interpreting the po- dio emission is almost completely linearly polarized, so larization direction of the radiation and the orientation there was no OPM ambiguity. of the proper motion relative to the spin axis. Pulsars In an earlier paper (Rankin 2007, hereafter Paper I) radiate because highly energetic outward-going charges we investigated the PPA vs. PM alignments of a num- are accelerated by the curved dipolar field within their ber of pulsars, drawing strongly on Johnston I as well as other sources. Here, a “fiducial” polarization position polar regions, so it is crucial to understand how this ra- P A diation is polarized relative to the (projected) B field angle (PPA) 0, at a (“fiducial”) rotational phase rep- orientation on the sky. Figure 1 shows how this field resenting the magnetic axis longitude, is measured and appears splayed when a pulsar’s beam points directly at referred to infinite frequency as a proxy for the (unseen) the Earth—the “fiducial” instant—and that the emission orientation of the rotation axis Ω. These were com- reaching us is associated with that bundle in the plane pared with well determined proper-motion (PM) direc- tions P AV , and the differences Ψ showed strong peaks of the rotation axis Ω. Clearly, we have no knowledge ◦ ◦ of the radial component of a pulsar’s space velocity and at both 0 and 90 . Given, however, that most of the only weak estimates of the radial component of Ω. pulsars showed strong OPM activity in their profiles, it At one time it seemed obvious that pulsar radiation was not possible to draw general conclusions about the must be polarized k to the projected magnetic field di- polarization orientation with respect to the projected B rection. How could it be otherwise given that both the direction. curving B field and the resulting curvature acceleration The second coupled key question is how a pulsar’s rota- lie in the same plane? Even after the discovery that pul- tion vector Ω is oriented with respect to its space velocity sars emit in two orthogonal (hereafter OPM) polariza- (of which we can usually measure only their projections on the plane of the sky)? The possibility of a corre- 2 Joanna M. Rankin Figure 1. Diagram showing the splayed curving field lines—here shown in projection—associated with pulsar emission at the “fidu- cial” instant when the beam faces the Earth directly. Both the magnetic axis M and pulsar rotation axis Ω are indicated in re- lation to the “fiducial” field lines (magneta) associated with the Figure 2. Polarization profile of B1706–16 from Johnston I show- radiation we receive at that instant. The projected fiducial field is ing its highly depolarized single core-component profile at 1369 MHz. The roughly linear, negative-going PPA (black curve) plot- k to the rotation axis Ω and thus used as a proxy for Ω which is ◦ otherwise usually not observable. Also indicated is the emission- ted in the upper panel connects smoothly with the PPA – 90 beam structure consisting of two concentric conal beams (outer: (blue) curve on the trailing edge of the profile, coinciding with the blue and inner: green) and the central core beam (yellow) in rela- minimum in the linear polarization (red curve) in the lower panel tion to a typical sightline traverse (black dashed). Any of the three where the total power (black) and circular polarization (green) are also plotted. The PPAs are referred to infinite frequency, and the beams can be present in a given pulsar and different sightline paths PA result in different profile types. Profiles with a core beam are of pri- V value is shown as a horizontal (cyan) line. See text. mary interest here—that is, the core-single (St) where it appears on its own; triple (T) profiles where one of the cones is present; and five-component (M) profiles where both cones appear. ⊥ to the projected B direction. This double ambigu- ity of proper-motion direction and OPM orientation has plagued efforts to settle how supernovae contribute to lation was raised early [Shklovskii (1969); Gott et al. pulsar velocities. (1970); Tademaru & Harrison (1975)] as their large pe- Although much of our earlier work had focused on clas- culiar velocities were realized, initially through scintilla- sifying the properties of different pulsar profile popula- tion studies. Though no binary pulsar was then known, tions according primarily to their emission geometry and their presumptive birth in the disruption of such systems frequency evolution [Rankin 1983, 1990, 1993a, 1993b; appeared to be a significant factor in their PMs. How- Rankin et al. (1989); Mitra & Rankin (2011); hereafter ever, binary disruption ultimately seemed inadequate to ET I, IV, VIa,b, — & IX], our analysis in Paper I failed account for the very large velocities of some pulsars. The- to use this information, despite the fact that most of the orists then began to explore other mechanisms for their stars there under consideration had long been classified acceleration—in particular the question of whether natal through detailed study. Most of the pulsars in the John- supernovae imparted “kicks” to their progeny. ston I study exhibited core, core-cone, or core-double This “kick” question has a complex history which cone profiles of the core-single (St), triple (T) or five- is nicely summarized in (Noutsos et al. 2012). Suf- component (M) types (see Fig. 1), and most of the 90◦ fice it to say that theorists suggested ingenious “kick” alignments pertained to pulsars of these types, but this mechanisms—both k and ⊥ to the orientation of a pul- circumstance was not then observed or interpreted. sar’s rotation Ω (as well possibly in combination?). In large part this failure stemmed from the complex- Mechanisms such as Galactic acceleration are known ity of the PPA traverses in some pulsars with bright which would tend to alter such “birth” alignments (e.g., core components. A number exhibit PPA traverses Noutsos et al. 2013), however the analyses quoted above that are readily fitted by the expected rotating-vector indicate that a surprisingly large proportion of pulsars ◦ ◦ (RVM) model (Radhakrishnan & Cooke 1969), while oth- show Ψ orientation close to either 0 or 90 . Again, ers have depolarized, OPM-active components with dis- however, the orientation of Ω cannot usually be deter- torted PPA traverses that have proven difficult to explain mined directly, but only though the fiducial PPA proxy P A and interpret. Recently, several detailed analyses of par- 0 that is complicated by OPM radiation either k or ticular bright pulsars with prominent core emission have Orientations of Pulsar Radiation and Supernova “Kicks” 3 counter-clockwise from North on the sky—and second, they must be referred to infinite frequency by accurately unwrapping the Faraday rotation of the PPAs.
Recommended publications
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • Constraining the Masses of Microlensing Black Holes and the Mass Gap with Gaia DR2 Łukasz Wyrzykowski1 and Ilya Mandel2,3,4
    A&A 636, A20 (2020) Astronomy https://doi.org/10.1051/0004-6361/201935842 & c ESO 2020 Astrophysics Constraining the masses of microlensing black holes and the mass gap with Gaia DR2 Łukasz Wyrzykowski1 and Ilya Mandel2,3,4 1 Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland e-mail: [email protected] 2 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia 3 OzGrav: The ARC Center of Excellence for Gravitational Wave Discovery, Australia 4 Institute of Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Received 6 May 2019 / Accepted 27 January 2020 ABSTRACT Context. Gravitational microlensing is sensitive to compact-object lenses in the Milky Way, including white dwarfs, neutron stars, or black holes, and could potentially probe a wide range of stellar-remnant masses. However, the mass of the lens can be determined only in very limited cases, due to missing information on both source and lens distances and their proper motions. Aims. Our aim is to improve the mass estimates in the annual parallax microlensing events found in the eight years of OGLE-III observations towards the Galactic Bulge with the use of Gaia Data Release 2 (DR2). Methods. We use Gaia DR2 data on distances and proper motions of non-blended sources and recompute the masses of lenses in parallax events. We also identify new events in that sample which are likely to have dark lenses; the total number of such events is now 18. Results.
    [Show full text]
  • New Wide Common Proper Motion Binaries
    Vol. 6 No. 1 January 1, 2010 Journal of Double Star Observations Page 30 New Wide Common Proper Motion Binaries Rafael Benavides1,2, Francisco Rica2,3, Esteban Reina4, Julio Castellanos5, Ramón Naves6, Luis Lahuerta7, Salvador Lahuerta7 1. Astronomical Society of Córdoba, Observatory of Posadas, MPC-IAU Code J53, C/.Gaitán nº 20, 1º, 14730 Posadas (Spain) 2. Double Star Section of Liga Iberoamericana de Astronomía (LIADA), Avda. Almirante Guillermo Brown No. 4998, 3000 Santa Fe (Argentina) 3. Astronomical Society of Mérida, C/José Ruíz Azorín, 14, 4º D, 06800 Mérida (Spain) 4. Plza. Mare de Dèu de Montserrat, 1 Etlo 2ªB, 08901 L'Hospitalet de Llobregat (Spain) 5. 0bservatory with MPC-IAU Code 939, Av. Primado Reig 183, 46020 Valencia (Spain) 6. Observatory of Montcabrer, MPC-IAU Code 213, C/Jaume Balmes, 24, 08348 Cabrils (Spain) 7. G.E.O.D.A., Observatorio Manises, MPC-IAU Code J98, C/ Mayor, 111-4, 46940 Manises (Spain) Abstract: In this work we report the discovery of 150 new double stars of which 142 are wide common proper motion stellar systems. In addition to this, we report the study of 23 recently catalogued wide common proper motion binaries discovered by other observers. Spectral types, photometric distances, kinematics and ages were determined from data ob- tained consulting the literature. Several criteria were used to determine the nature of each double star. Orbital periods and the semimajor axes were calculated. they are good sensors to detect unknown mass concen- 1. Introduction trations that they may encounter along their galactic For several years double-star amateurs have con- trajectories.
    [Show full text]
  • Lecture 8: Stellar Motions Reading: Box 19-1
    Lecture 8: Stellar Motions Reading: Box 19-1 Key Ideas The stars are in constant motion. Observed Motions Proper motions (motion against the background, measured in angular motion/time) Radial velocities (motion towards or away, measured from the Doppler shift) True Space Motion Combination of radial velocity, proper motion, and distance (important for proper motion!) The “Fixed” Stars Although the stars are moving, their motions across the sky are so small that to the naked eye, the stars appear “fixed” to the sky. Great distances make the amount of motion small on human lifetimes. (Of course, stars moving directly away or towards us will not to appear to move across the sky) Proper Motions Apparent angular motion across the sky of nearby stars with respect to distant objects. (Distant stars are used because we assume that even though they are moving through space they are so far away that from our perspective they are fixed). It is the projection of the star’s true motion through space relative to the Sun. Typical proper motion for stars in the solar neighborhood is about 0.1 arcsec/year Largest proper motion measured is 10.25 arcsec/year Barnard’s Star) Proper motions are cumulative. Effects build up over time. The longer you wait, the greater apparent angular motion is. Measuring proper motions: Compare photos of the sky taken 20 to 50 years apart Measure how much stars have moved compared to more distant background objects (galaxies, quasars). Example: if a star has a proper motion of 0.1 arcsec/year: In one year, it moves 0.1 arcsec In 10 years, it moves 10x0.1= 1 arcsec In 100 years, it moves 100x0.1 =10 arcsec It can take a long time for the constellations to noticeably change shape.
    [Show full text]
  • Arxiv:1703.10167V1
    Draft version April 9, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 ON THE ORIGIN OF SUB-SUBGIANT STARS. I. DEMOGRAPHICS Aaron M. Geller1,2,†,∗, Emily M. Leiner3, Andrea Bellini4, Robert Gleisinger5,6, Daryl Haggard5, Sebastian Kamann7, Nathan W. C. Leigh8, Robert D. Mathieu3, Alison Sills9, Laura L. Watkins4, David Zurek8,10 1Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA; 2Adler Planetarium, Dept. of Astronomy, 1300 S. Lake Shore Drive, Chicago, IL 60605, USA; 3Department of Astronomy, University of Wisconsin-Madison, WI 53706, USA; 4Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; 5Department of Physics, McGill University, McGill Space Institute, 3550 University Street, Montreal, QC H3A 2A7, Canada; 6Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; 7Institut f¨ur Astrophysik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, 37077 G¨ottingen, Germany; 8Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024; 9Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; 10Visiting Researcher, NRC – Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7, Canada Draft version April 9, 2018 ABSTRACT Sub-subgiants are stars observed to be redder than normal main-sequence stars and fainter than normal subgiant (and giant) stars in an optical color-magnitude diagram. The red straggler stars, which lie redward of the red giant branch, may be related and are often grouped together with the sub-subgiants in the literature.
    [Show full text]
  • Near IR Astrometry of Magnetars Shriharsh P
    Neutron Stars and Pulsars: Challenges and Opportunities after 80 years Proceedings IAU Symposium No. 291, 2012 c International Astronomical Union 2013 J. van Leeuwen, ed. doi:10.1017/S1743921312024702 Near IR Astrometry of Magnetars Shriharsh P. Tendulkar Department of Astronomy and Astrophysics, California Institute of Technology email: [email protected] Abstract. We report on the progress of our five-year program for astrometric monitoring of mag- netars using high-resolution NIR observations using the laser guide star adaptive optics (LGS- AO) supported NIRC2 camera on the 10-meter Keck telescope. We have measured the proper motion of two of the youngest magnetars, SGR 1806−20 and SGR 1900+14, which have coun- terparts with K ∼21 mag, and have placed a preliminary upper limit on the motion of the young AXP 1E 1841−045. The precision of the proper motion measurement is at the milliarcsecond per year level. Our proper motion measurements now provide evidence to link SGR 1806−20 and SGR 1900+14 with neighboring young star clusters. At the distances of these magnetars, their proper motion corresponds to transverse space velocities of 350±100 km s−1 and 130±30 km s−1 respectively. The upper limit on the proper motion of AXP 1E 1841−045 is 160 km s−1 .With the sample of proper motions available, we conclude that the kinematics of the magnetar family are not distinct from that of pulsars. Keywords. infrared:stars,stars:neutron,techniques: high angular resolution, astrometry, instrumentation: adaptive optics 1. Introduction Magnetars or highly magnetized neutron stars were proposed by Thompson & Duncan (1996) as a unified model to explain the phenomena of soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs).
    [Show full text]
  • The Proper Motion of M31 Roeland Van Der Marel (Stsci)
    The Proper Motion of M31 Roeland van der Marel (STScI) (ApJ, July 2012) I: HST measurement (Sohn, Anderson & vdMarel) II: Implied velocity + LG mass (vdMarel et al.) III: MW-M31-M33 future (vdMarel, Besla, et al.) [Other collaborators: Fardal, Beaton, Guhathakurta, Brown, Cox] History • 1912: Slipher measures VLOS ; implies approach towards Milky Way at ~110 km/s Galactocentric • 1918: Barnard finds no dectable proper motion (PM) from observations started in 1898 • No successful subsequent proper motion measurements 2 • The MW and M31 protogalaxies started expanding radially outwards after the Big Bang • Subsequently started falling back Theory together due to their mutual gravity (timing argument) • Angular momentum induced by [Peebles et al. 2001] tidal torques from surrounding model Local Universe: Vtan < 200 km/s solutions • Millennium simulation MW-M31- like pairs (Li & White 2008) – median Vtan ~ 87 km/s • Action modeling shows many v possible solutions trans supergalactic coordinates wide range of possible orbits 3 Proper Motion Challenge • Relevant proper motions are small – 200 km/s at M31 = 55 μas/year – 40 km/s at M31 = 11 μas/year • Maser VLBI – 2014? – First discovered in M31 by Sjouwerman et al. (2010) and Darling (2011) – Some years of follow-up required • GAIA – 2018? – MW-optimized, but can measure bright uncrowded M31 stars • HST – now! – 200 km/s at M31 = 0.007 ACS/WFC pixels over 7 years 4 M31 HST Proper Motion Measurement • Three fields observed to great depth (>200 orbits)with ACS 2002-2004 to study MSTO (Brown et al.) – Spheroid – Outer Disk – Tidal Stream • Reobserved in 2010 for 9 orbits to determine proper motions.
    [Show full text]
  • On Gp Kuiper's Work on the Stars of Large Proper Motion
    ON G.P. KUIPER'S WORK ON THE STARS OF LARGE PROPER MOTION William P. Bidelman Warner and Swasey Observatory, Case Western Reserve University ABSTRACT The writer is preparing for publication a complete listing of the late G.P. Kuiperfs spectral classifications of stars of large proper motion north of δ=-50 . This work, resulting from his observations made at the Yerkes and McDonald Observatories some 35 years ago, has been only partially published; it is esti- mated that useful unpublished classifications exist for the order of 1000 stars. This paper discusses the background of his program and the procedures to be followed in making these data generally available. Kuiper's spectral classification program on the stars of large proper motion, which eventually comprised some 3500 objects observed during 1938-1944 at Yerkes and McDonald, represented a natural outgrowth of his earlier determination with the Lick Cross ley reflector of the colors of all known stars of large par- allax north of 6=-20° for which no spectral class nor color index was known. On reporting its completion, Kuiper (1935) states: "Next in importance to the stars of (known) large parallax, in a statistical study of the near-by stars, are the stars with large proper motions (but without known parallax). Annual proper motions of 0750 and larger invariably indicate interesting stars; they are either in the immediate neighborhood of the Sun, or pos- sess very high space velocities. The lower limit 0750 has been adopted in the present color program, but in future work the limit may well be taken as low as 074 or 073.
    [Show full text]
  • Proper Motion of a Star
    Page 1 of 7 Group Members: __________________ __________________ __________________ Proper Motion of a Star In this exercise you will measure the proper motion of Barnard’s Star and use it, with a given parallax and radial velocity, to determine the space motion of the star. Background information In 1718 Edmund Halley had noted that some stars were not fixed, but appeared to move in the sky relative to other stars. Arctures in Boötes and Sirius in Canis Major were the first stars detected by Halley to have proper motion. Proper motion is the angular change in position of a star across our line of sight, measured in arc seconds per year, and symbolized with the Greek letter “mu” μ. Proper motion is generally measured by taking photographs several years apart and measuring the movement of the image of a star with respect to more distant background stars over that time period. Usually decades must elapse between successive photographs before a reliable measurement can be made. The star with the largest proper motion was discovered by E. E. Barnard in 1916 at Yerkes Observatory. This star, now called Barnard’s Star, is a 9.5 magnitude star located in the constellation Ophiuchus. Its proper motion is so much larger than that of any other star that it is considered to be virtually a “runaway” star. Even so, the angular velocity is small enough that measurements must be made from photographs taken many years apart. The negatives of Barnard’s Star provided in this lab were taken in 1924 and 1951 respectively.
    [Show full text]
  • Arxiv:2101.05282V3 [Astro-Ph.SR] 2 Feb 2021 at Angular Separations Greater Than About One Arcsecond, Wide Et Al
    MNRAS 000,1–26 (2021) Preprint 3 February 2021 Compiled using MNRAS LATEX style file v3.0 A million binaries from Gaia eDR3: sample selection and validation of Gaia parallax uncertainties Kareem El-Badry,1,2¢ Hans-Walter Rix,2 and Tyler M. Heintz3 1Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA 2Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany 3Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215, US Accepted to MNRAS ABSTRACT We construct from Gaia eDR3 an extensive catalog of spatially resolved binary stars within ≈ 1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We estimate the probability that each pair is a chance alignment empirically, using the Gaia catalog itself to calculate the rate of chance alignments as a function of observables. The catalog contains 1.3 (1.1) million binaries with >90% (>99%) probability of being bound, including 16,000 white dwarf – main sequence (WD+MS) binaries and 1,400 WD+WD binaries. We make the full catalog publicly available, as well as the queries and code to produce it. We then use this sample to calibrate the published Gaia DR3 parallax uncertainties, making use of the binary components’ near-identical parallaxes. We show that these uncertainties are generally reliable for faint stars (퐺 & 18), but are underestimated significantly for brighter stars. The underestimates are generally ≤ 30% for isolated sources with well-behaved astrometry, but are larger (up to ∼80%) for apparently well-behaved sources with a companion within .
    [Show full text]
  • Arxiv:0902.1781V2 [Astro-Ph.GA] 30 Mar 2009 Martinez-Delgado .Munn A
    SEGUE: A Spectroscopic Survey of 240,000 stars with g =14–20 Brian Yanny1, Constance Rockosi2, Heidi Jo Newberg3, Gillian R. Knapp4, Jennifer K. Adelman-McCarthy1, Bonnie Alcorn1, Sahar Allam1, Carlos Allende Prieto5,6, Deokkeun An7, Kurt S. J. Anderson8,9, Scott Anderson10, Coryn A.L. Bailer-Jones11, Steve Bastian1, Timothy C. Beers12, Eric Bell11, Vasily Belokurov13, Dmitry Bizyaev8, Norm Blythe8, John J. Bochanski10, William N. Boroski1, Jarle Brinchmann14, J. Brinkmann8, Howard Brewington8, Larry Carey10, Kyle M. Cudworth15, Michael Evans10, N. W. Evans13, Evalyn Gates15, B. T. G¨ansicke16, Bruce Gillespie8, Gerald Gilmore13, Ada Nebot Gomez-Moran17, Eva K. Grebel18, Jim Greenwell10, James E. Gunn4, Cathy Jordan8, Wendell Jordan8, Paul Harding19, Hugh Harris20, John S. Hendry1, Diana Holder8, Inese I. Ivans4, Zeljko Ivezi´c10, Sebastian Jester11, Jennifer A. Johnson7, Stephen M. Kent1, Scot Kleinman8, Alexei Kniazev11, Jurek Krzesinski8, Richard Kron15, Nikolay Kuropatkin1, Svetlana Lebedeva1, Young Sun Lee12, R. French Leger1, S´ebastien L´epine21, Steve Levine20, Huan Lin1, Daniel C. Long8, Craig Loomis4, Robert Lupton4, Olena Malanushenko8, Viktor Malanushenko8, Bruce Margon22, David Martinez-Delgado11, Peregrine McGehee23, Dave Monet20, Heather L. Morrison19, Jeffrey A. Munn20, Eric H. Neilsen, Jr.1, Atsuko Nitta8, John E. Norris24, Dan Oravetz8, Russell Owen10, Nikhil Padmanabhan25, Kaike Pan8, R. S. Peterson1, Jeffrey R. Pier20, Jared Platson1, Paola Re Fiorentin26,11, Gordon T. Richards27, Hans-Walter Rix11, David J. Schlegel25, Donald P. Schneider28, Matthias R. Schreiber29, Axel Schwope17, Valena Sibley1, Audrey Simmons8, Stephanie A. Snedden8, J. Allyn Smith30, Larry Stark10, Fritz Stauffer8, M. Steinmetz17, C. Stoughton1, Mark SubbaRao15,31, Alex Szalay32, Paula Szkody10, Aniruddha R. Thakar32, Sivarani Thirupathi12, Douglas Tucker1, Alan Uomoto33, Dan Vanden Berk28, Simon Vidrih18, Yogesh Wadadekar4,34, Shannon Watters8, Ron Wilhelm35, Rosemary F.
    [Show full text]
  • New Determinations of the Proper Motions of 44 Pulsars PA
    Mon. Not. R. Astron. Soc. 261,113-124 (1993) .113H New determinations of the proper motions of 44 pulsars 93MNRAS.261. 19 P. A. Harrison, A. G. Lyne and B. Anderson University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire SKI 1 9DL Accepted 1992 August 28. Received 1992 August 28; in original form 1992 May 22 ABSTRACT A programme of observations to measure the proper motions of 44 pulsars has been carried out at Jodrell Bank over a four-year period, yielding 31 determinations of proper motion and 13 upper limits. Observations were carried out with two interfero- meters of the MERLIN radio synthesis instrument at 408 MHz. By wide-field phase referencing to multiple sources within the primary beam of the instrument, accurate positions of each pulsar relative to its reference sources have been determined for a number of epochs. The change in the measured position with epoch results in the determination of the proper motion of the pulsar, using a method similar to that of Lyne, Anderson & Salter. The new measurements double the number of interfero- metrically measured proper motions and reinforce the general picture which emerged from that study, i.e. pulsars form a population of high-velocity objects (with rms speed - 300 km s~1 ) which seem to be migrating from the galactic plane. The new kinetic age determinations also support the conclusion that the magnetic fields of pulsars decay on time-scales of a few million years. The observation of a small number of pulsars moving towards the galactic plane, however, implies that there is a small population of pulsars born far from the plane, requiring some modification of the traditionally held views about pulsar birthplaces.
    [Show full text]