[I] NORTH of ENGLAND INSTITUTE of MINING ENGINEERS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MACHINES OR ENGINES, in GENERAL OR of POSITIVE-DISPLACEMENT TYPE, Eg STEAM ENGINES
F01B MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES (of rotary-piston or oscillating-piston type F01C; of non-positive-displacement type F01D; internal-combustion aspects of reciprocating-piston engines F02B57/00, F02B59/00; crankshafts, crossheads, connecting-rods F16C; flywheels F16F; gearings for interconverting rotary motion and reciprocating motion in general F16H; pistons, piston rods, cylinders, for engines in general F16J) Definition statement This subclass/group covers: Machines or engines, in general or of positive-displacement type References relevant to classification in this subclass This subclass/group does not cover: Rotary-piston or oscillating-piston F01C type Non-positive-displacement type F01D Informative references Attention is drawn to the following places, which may be of interest for search: Internal combustion engines F02B Internal combustion aspects of F02B 57/00; F02B 59/00 reciprocating piston engines Crankshafts, crossheads, F16C connecting-rods Flywheels F16F Gearings for interconverting rotary F16H motion and reciprocating motion in general Pistons, piston rods, cylinders for F16J engines in general 1 Cyclically operating valves for F01L machines or engines Lubrication of machines or engines in F01M general Steam engine plants F01K Glossary of terms In this subclass/group, the following terms (or expressions) are used with the meaning indicated: In patent documents the following abbreviations are often used: Engine a device for continuously converting fluid energy into mechanical power, Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. Machine a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump. -
The Angel's Way Route Seaton Sluice to Chester-Le-Street
Northern Saints Trails The Angel’s Way Seaton Sluice to Chester-le-Street 49 kms, 30.5 miles Introduction The Angel’s Way is an important link in the network of the Northern Saints Trails. This route between Seaton Sluice and Chester-le-Street means that there is a continuous 114 mile route between Lindisfarne and Durham, using St Oswald’s Way as far as Warkworth, The Way of the Sea from Warkworth to Seaton Sluice and after The Angel’s Way, Cuddy’s Corse (which is also part of The Way of Learning) from Chester-le-Street to Durham. All the Northern Saints Trails use the waymark shown here. In two parts, from near Holywell to Camperdown and from Bowes Railway Path to West Urpeth, the route follows The Tyne & Wear Heritage Way which is well signed and the waymark is also shown here. The route is divided into 4 sections, 3 of which are between 13 to 14 kilometres or 8 to 8.5 miles in length and section 3 from Millennium Bridge to The Angel of the North is just 8 kilometres or 5 miles. The route is of course named after the iconic Angel of the North designed by Antony Gormley. Since it was erected in 1998, it has quickly become Britain’s best known sculpture. When he designed the sculpture Gormley deliberately angled the wings 3.5 degrees forward to create what he described as “a sense of embrace”. This ties in with the protective concept of the guardian angel and if you want to engage with that theme as you journey on The Angel’s Way, perhaps this prayer will be appropriate: Angel of God, my guardian dear, to whom God’s love commits me here, ever this day, be at my side, to light and guard rule and guide. -
1 Humphry Davy in 1816
Humphry Davy in 1816: Letters and the Lamp Sharon Ruston Lancaster University By 1816, not yet 40 years old, Humphry Davy had retired from his paid roles at the Royal Institution of Great Britain, Board of Agriculture, and the Royal Society, after marrying the wealthy widow Jane Apreece and being awarded a knighthood. However the invention for which he is now best known was yet to come. When Robert Gray, rector of Bishopwearmouth, wrote to him on behalf of coal mine owners in the North East, asking him to turn his mind to the question of how to light mines safely, Davy responded with characteristic optimism and confidence. His response reveals his motive and agenda from the outset. He intended his contribution to be considered as theoretical, scientific knowledge for a higher purpose: “It will give me very great satisfaction if my chemical knowledge can be of any use in an enquiry so interesting to humanity” (letter from Davy to Robert Gray, August 3, 1815).1 In this essay I will discuss letters that demonstrate the lengths to which Davy went to maintain this view of his development of the miners’ safety lamp that became known as the “Davy lamp”. The forthcoming Collected Letters of Sir Humphry Davy edition will publish approximately one thousand letters not currently in the public domain. These letters will be of particular interest to Romantic-period literary scholars: they include letters to Wordsworth, Coleridge, Southey, Maria Edgeworth, and Walter Scott; there are letters that discuss Byron and the scandalous circle at Geneva in 1816, and letters that demonstrate Davy’s poetic sensibility. -
Positive Displacement Reciprocating Pump Fundamentals— Power and Direct Acting Types
POSITIVE DISPLACEMENT RECIPROCATING PUMP FUNDAMENTALS— POWER AND DIRECT ACTING TYPES by Herbert H. Tackett, Jr. Reciprocating Product Manager James A. Cripe Senior Reciprocating Product Engineer Union Pump Company; A Textron Company Battle Creek, Michigan and Gary Dyson Director of Product Development - Aftermarket Union Pump, A Textron Company A Trading Division of David Brown Engineering, Limited Penistone, Sheffield ABSTRACT Herbert H. Tackett, Jr., is Reciprocating Product Manager for Union Pump Company, This tutorial is intended to provide an understanding of the in Battle Creek, Michigan. He has 39 years fundamental principles of positive displacement reciprocating of experience in the design, application, and pumps of both power and direct acting types. Topics include: maintenance of reciprocating power and • A definition and overview of the pump types—Including the direct acting pumps. Prior to Mr. Tackett’s differences between single acting and double acting pumps, how current position in Aftermarket Product both types work, where they are used, and how they are applied. Development, he served as R&D Engineer, Field Service Engineer, and new equipment • Component options—Covers aspects of valve designs and when order Engineer, in addition to several they should be used; describes the various stuffing box designs positions in Reciprocating Pump Sales and Marketing. He has been available with specific reference to their function and application, a member of ASME since 1991. and points out the differences between plungers and pistons and their selection criteria. • Specification criteria and methodology—What application James A. Cripe currently is a Senior information is needed by pump suppliers to correctly size and Reciprocating Product Engineer assigned supply appropriate equipment? to the New Product Development Team for Union Pump Company, in Battle Creek, • Additional topics—Volumetric and mechanical efficiency, net Michigan. -
Reciprocating Pump
Mechanical Engineering Fundamentals Vipan Bansal Department of Mechanical Engineering ([email protected]) Mechanical Engineering Fundamentals (MEC103) L T P Cr 4 0 0 4 Content 1) Fundamental Concepts of Thermodynamics 2) Laws of Thermodynamics 3) Pressure and its Measurement 4) Heat Transfer 5) Power Absorbing Devices 6) Power Producing Devices 7) Principles of Design 8) Power Transmission Devices and Machine Elements Lecture No. - 2 • Positive displacement Pumps Power Absorbing Devices The equipment's or devices that consume power for the working are called power absorbing devices. Examples: Pumps, Compressor, Refrigerators etc. Classification of Pumps Type of Pumps Positive Dynamic Displacement Reciprocating Rotary Centrifugal Axial Positive Displacement vs Dynamic Pumps S. No. Parameter Positive Displacement Pumps Dynamic Pumps 1 Flow Rate Low flow rate High flow rate 2 Pressure High Moderate 3 Priming Very Rarely Always 4 Viscosity Virtually No effect Strong effect 5 Energy added to In positive displacement pumps, In dynamic pumps, energy is added to fluid the energy is added periodically to the fluid continuously through the the fluid. rotary motion of the blades. Reciprocating Pump • Reciprocating pumps are positive displacement pumps thus for the functioning of these pumps no priming (No need to fill the cylinder with liquid before starting) is required in their starting. • High pressure is the main characters of this pump. Reciprocating Pump • In reciprocating pumps, the chamber in which the liquid is trapped or entered, is a stationary cylinder that contains piston or plunger or diaphragm. • Reciprocating pumps are used in limited applications because they require lots of maintenance. • Piston pump, plunger pumps, and diaphragm pumps are examples of reciprocating pump. -
On the Breccia Gashes of the Durham Coast. Lebour.G.A
Durham E-Theses Some aspects of the geomorphology of the Durham coast Westgate, W. A. How to cite: Westgate, W. A. (1957) Some aspects of the geomorphology of the Durham coast, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8519/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. SOME ASPECTS OF THE G-EOMQRPHOLO GY OP THE DUHHAM COAST W.A. Westgate, B.Sc. Submitted for the Degree of Ph.D. in the University of Durham. February, 1957. Itmm?, not ** > \ i3i (i) This research was carried out whilst I was in receipt of a Nature Conservancy Research Studentship "between July 1953 and July 1955. -
Meeting Reports
AUGUST 2014 MEETING Speaker: Andrew Conacher Topic: Sir Humphry Davy – The Davy Lamp Andrew’s talk on Sir Humphry Davy was most engaging and enjoyable. He firstly spoke on Sir Humphry’s background and life and then focused on the Davy Lamp, its context and importance. Andrew indicated that he has an ancestral family connection to Sir Humphry. The following is a brief extract from Andrew’s paper. Sir Humphry was born on 17 December 1778 in Penzance, Cornwall, England and died 29 May 1829 in Geneva, Switzerland aged 50 years. A statue stands in Penzance with him holding his safety lamp. Andrew Conacher holds up miner’s safety lamps. He was both a chemist and inventor Picture: KIRK GILMOUR, Wollongong Advertiser 6 August 2014 and was also a poet and painter. He enthusiastically turned to science and later became a professor at the Royal Institution and flame (acting as a flame arrestor) presented a series of lectures which were later published. thus preventing the methane gas burning inside the lamp to pass out He worked with a number of scientists of the day (for into the atmosphere. The lamp also example, Sir Joseph Banks, who interviewed Davy for his provided a test for the presence of role at the Royal Institution and Michael Faraday who was gases. If flammable gases were a co-worker with him) and was a popular public figure. present the flame of the lamp He made a number of scientific discoveries (for example, burnt higher and with a blue tinge. electrolysis, sodium, potassium, barium) and was knighted The lamp saved lives and helped in1812 and awarded a baronetcy in 1819. -
The Origins and Treatment of Derelict Land in County Durham
Durham E-Theses the origins and treatment of derelict land in county Durham Hartley, Derek How to cite: Hartley, Derek (1998) the origins and treatment of derelict land in county Durham, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4648/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The origins and treatment of derelict land in County Durham DEREK HARTLEY The University of Durham Department of Geological Sciences January 1998 This thesis is submitted in partial fulfilment of the requirements for the degree ofM.Sc. in Environmental Management Practice The copyright of this thesis rests with the author. No quotation from it should be published without the written consent of the author and information derived from it should be acknowledged. This work is the copyright of Derek Hartley 1998 1 2 MAY 1998 ABSTRACT The study considers the programme of derelict land reclamation carried out in County Durham, which was largely dictated by considerations of economic development and visual impact. -
Explosibility of Coal Dust
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOKGE OTIS SMITH, DIRECTOR BULLETIN 425 THE EXPLOSIBILITY OF COAL DUST BY GEORGE S. RICE WITH CHAPTERS BX J. C. W. FRAZER, AXEL LARSEN, FRANK HAAS, AND CARL SCHOLZ WASHINGTON GOVERN M E N T P K I N T IN G OFFICE 1910 CONTENTS. Page. Introd uctory statement...................................... ............ 9 The coal-dust, problem................................................ 9 i Acknowledgments.................................................... 10 Historical review of the coal-dust question in Europe ....................... 11 Observations in England prior to 1850................................. 11 Observations by French engineers prior to 1890........................ 12 Experiments in England between 1850 and 1885........................ 12 Experiments in Prussia............................,.............:..... 14 Experiments in Austria between 1885 and 1891......................... 16 Views of English authorities between 1886 and 1908.................... 17 German, French, and Belgian stations for testing explosives............ 19 Altofts gallery, England, 1908......................................... 21 Second report of Royal Commission on Mines, 1909...................... 21 Recent Austrian experiments.......................................... 22 Historical review of the coal-dust question in the United States.............. 23 Grahamite explosions in West Virginia, 1871 and 1873.................. 23 Flour-mill explosion at Minneapolis, 1878............................. -
RAOB Directory June 2017.Xlsx
No. 47 NEW SERIES Issued May 2014 3 R.A.O.B. G.L.E. PHILANTHROPY CONVIVIALITY THE ROYAL ANTEDILUVIAN ORDER OF BUFFALOES DIRECTORY And Official List of Lodges under the Grand Lodge of England Circulated throughout the World Compiled and Published by authority of the Grand Lodge of England By Christopher McMahon Grand Secretary R.A.O.B. G.L.E. Grove House Harrogate HG1 4LA Copyright R.A.O.B. G.L.E. CONTENTS Page No. HOME PROVINCIAL GRAND LODGES ………………………………… 3 - 92 OVERSEAS PROVINCIAL GRAND LODGES …………………………. 93 - 94 LODGES DIRECT UNDER THE GRAND LODGE OF ENGLAND ………………………………. 95 - 96 RAOB CLUBS Controlled by PGL's or Minor Lodges …………………………… 97 - 98 Controlled by Independent Committees ………………………… 99 - 100 OTHER GRAND LODGES …………………………………………….. 101 - 127 INDEX OF PLACE NAMES 128 - 136 * Indicates Disabled Access Page 1 The Grand Primo 2014 BRO. BRIAN JOHN FOOT Page 2 PROVINCIAL GRAND LODGES ABERDEEN PROV. GRAND LODGE Sec: G.S. Munro, 87 Gairn Terrace, Aberdeen, AB10 6AY Tel: 07979 697324. Email: [email protected] NO NAME AND ADDRESS MEETING P.G.L. RUA Social Club, 5-7 West Craibstone Street, Aberdeen, 2nd. Wed 8.00 p.m. AB11 6DL (except July) ROH. ASS, RUA Social Club, 5-7 West Craibstone Street, Tues after PGL 7.30 p.m. Aberdeen, AB11 6DL KTS CHAP, RUA Social Club, 5-7 West Craibstone Street 2nd Tues after PGL 7.30 p.m. Aberdeen, AB11 6DL 6952 BON ACCORD, RUA Social Club, 5-7 West Craibstone Street Tues. 8.30 p.m. Aberdeen, AB11 6DL 7174 FAITHLIE, British Legion Club, School Street, Fraserburgh, Mon 7.30 p.m. -
A6.CMND.1845 Explosion at Hapton
I '" I I 0 .) I i,:e'�� ��� ,;�>� MINISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 by H. S. STEPHENSON, B.Sc., M.I.Min.E. H.M. Chief Inspector of Mines and Quarries Presented 10 Parliament by the Minister of Power by Commandof Her Majesty November, 1962 LONDON HER MAJESTY'S STATIONERY OFFICE FIVE SHILLINGS NeT Cmnd. 1845 • • MI ISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the cau es of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 by H. S. STEPHENSO , B.Sc., M.I.Min.E. H.M. Cruef lnspector of Mmec., and Quarries Prts�nfed (0 Parliament hy 'he tlmisler of Po ...·er hy Command of Her Ma;esty Norember. 196] LO\DOS HER MAJESTY'S STATIO'lERY OFFICE FnE SHILll"'GS "ET Cmnd. IB45 TABLE OF CONTENTS Page GE:>ER DESCRIPTIO'\ • • • • �L · . 2 . The Colliery . 2 The Lnion Seam · . 2 l\o. 2 Di:,lricl , • • · , , . • • 3 General 3 Ventdation .. " · ' · , 3 Shotfirin� · . · . · ' 4 Precautions agall1st coal dust " " · ' " " " 4 Automatic firedamp detectors " , . · . 4 General experience " " " " 4 THE DA \' BEFORE THE EXPLOSfO,\, 5 The Afternoon ShIft of 21>1 �Iarch " 5 The 'light ShIft of 21st 22nd "larch , . 5 The Day Shift of 22nd \>larch , . • • 6 THE EXPLOSIO,\ • • • • • • 7 TilE I"'IVESTlGAlfON 9 General 9 The Extent of Flame and Blast 9 9 The intake gate • • • • The face and �tables • 9 The return gate 9 Summary 10 10 Ventilation • Ex.plosives • I I Safety Lamp, 1 2 Contraband • 1 2 1 Road DUll Sample, • • " 2 1 Electrical Apparatus " 2 Mechanical Apparatus 1 2 13 Frictional Heal • , . -
Treatment of Acid Mine Drainage 21
RESEARCH PAPER 99/10 Treatment of Acid Mine 2 FEBRUARY 1999 Drainage The problem of acid mine drainage (AMD) has been present since mining activity began thousands of years ago. Mining activity has disrupted the hydrology of mining areas so badly that it is extremely difficult to predict where water would eventually re-emerge. Individual mine closures have not resulted in massive AMD events as pumping continued so as to allow mining at nearby operational mines. It is now, when whole coalfields will finally close, that AMD will become the problem it has promised to be. AMD will be a chronic problem and one that will degrade local streams, rivers and other watercourses. Whilst, in some cases, drainage occurs that is not acidic, all mine drainage events pose the problem of introducing iron, and potentially other metals, to local watercourses. With the advent of major AMD events, as evidenced by Wheal Jane in Cornwall, it will become necessary to identify methods that will be used to treat AMD when coal fields close and the source of money to pay for them. The alternative is to prevent drainage occurring by continued pumping. Stephen McGinness SCIENCE AND ENVIRONMENT SECTION HOUSE OF COMMONS LIBRARY Recent Library Research Papers include: List of 15 most recent RPs 98/115 The Greater London Authority Bill: A Mayor and Assembly for London 11.12.98 Bill 7 of 1998-99 98/116 The Greater London Authority Bill: Transport Aspects Bill 7 of 1998-99 10.12.98 98/117 Water Industry Bill (revised edition) Bill 1 [1998/99] 10.12.98 98/118 The Greater London