Combinatorial Slice Theory

Total Page:16

File Type:pdf, Size:1020Kb

Combinatorial Slice Theory Combinatorial Slice Theory MATEUS DE OLIVEIRA OLIVEIRA Doctoral Thesis Stockholm, Sweden 2013 TRITA-CSC-A 2013:13 ISSN-1653-5723 KTH School of Computer Science and Communication ISRN-KTH/CSC/A–13/13-SE SE-100 44 Stockholm ISBN 978-91-7501-933-8 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi tors- dagen den 12 dec 2013 klockan 10.00 i F3 , Kungl Tekniska högskolan, Lindstedtsvä- gen 26, Stockholm. © Mateus de Oliveira Oliveira, December 2013 Tryck: Universitetsservice US AB iii Abstract Slices are digraphs that can be composed together to form larger digraphs. In this thesis we introduce the foundations of a theory whose aim is to provide ways of defining and manipulating infinite families of combinatorial objects such as graphs, partial orders, logical equations etc. We give special attention to objects that can be represented as sequences of slices. We have successfully applied our theory to obtain novel results in three fields: concurrency theory, combinatorics and logic. Some notable results are: Concurrency Theory: • We prove that inclusion and emptiness of intersection of the causal behavior of bounded Petri nets are decidable. These problems had been open for almost two decades. • We introduce an algorithm to transitively reduce infinite families of DAGs. This algorithm allows us to operate with partial order languages defined via distinct formalisms, such as, Mazurkiewicz trace languages and message sequence chart languages. Combinatorics: • For each constant z ∈ N, we define the notion of z-topological or- der for digraphs, and use it as a point of connection between the monadic second order logic of graphs and directed width measures, such as directed path-width and cycle-rank. Through this connec- tion we establish the polynomial time solvability of a large number of natural counting problems on digraphs admitting z-topological orderings. Logic: • We introduce an ordered version of equational logic. We show that the validity problem for this logic is fixed parameter tractable with respect to the depth of the proof DAG, and solvable in polynomial time with respect to several notions of width of the equations being proved. In this way we establish the polynomial time provability of equations that can be out of reach of techniques based on comple- tion and heuristic search. iv Sammanfattning Slices är riktade grafer som kan sammansättas för att forma större rik- tade grafer. Avhandlingen beskriver en ny metod, ’slice-teori’, vars syfte är att hantera komplexa beräkningar på kombinatoriska objekt som exemplifieras med grafer, partialordningar och logiska ekvationer. Dessa objekt represen- teras som sekvenser av slices. Vi har framgångsrikt använt vår teori för att etablera nya resultat inom tre områden: concurrency-teori, kombinatorik och logik. Några viktiga resultat är som följer: Concurrency-teori: • Vi bevisar att inklusion och snittomhet för det kausala beteendet för begränsade Petrinät är avgörbara. Dessa problem uppstår vid verifiering av parallella system och har varit öppna i nästan två decennier. • Vi introducerar en algoritm för att transitivt reducera oändliga familjer av riktade acykliska grafer. Denna algoritm gör det möjligt att hantera partialordningsspråk definierade genom distinkta for- malismer som Mazurkiewicz-spår och meddelandesekvensdiagram. Kombinatorik: • Vi introducerar idén om en z-topologisk ordning för digrafer, med tillhörande komplexitetsmått zig-zag-tal, och använder den för att knyta ihop andra ordningens monadiska logik för grafer med riktade breddmått, såsom riktad stigbredd och cykelrangordning. Genom denna konstruktion bevisar vi att ett stort antal naturliga beräkn- ingsproblem med digrafer som tillåter en z-topologisk ordning är lösbara i polynomisk tid, närhelst z är fixerad. Logik: • Vi introducerar en ordnad variant av ekvationslogik. Vi visar att giltighetsproblemet för denna logik är fixparameterlösligt med avseende på djupet i den riktade acykliska bevisgrafen, och lösbar i polynomisk tid med avseende på flera mått på bredd hos ekvation- erna som finns med i beviset. På detta sätt etablerar vi bevisbarhet i polynomisk tid för ekvationer i ekvationslogik som kan ligga utom räckhåll för tekniker som baseras på komplettering och heuristisk sökning. v Acknowledgements In first place I thank my advisor, Karl Meinke for hiring me as a PhD student and for sharing with me his knowledge and enthusiasm for equational logic. I am also grateful to my co-advisor Stefan Arnborg, for his insightful comments on several aspects of slice theory. I am deeply grateful both to Karl and Stefan for several rounds of corrections, comments and suggestions to improve the readability of this thesis. I thank the Swedish Research Council VR, the European Union under ARTEMIS PROJECT 269335 MBAT (P.I. Karl Meinke) and the Department of Theoretical Computer Science (TCS/KTH) for financially supporting this research. I am grateful to my colleagues and friends at TCS/KTH for the nice atmosphere they create. I thank in particular Cenny Wenner for several nice discussions dur- ing the time we shared our office. I thank Karl Palmskog and Marcus Dicander for helping me with the translation of the abstract of this thesis into Swedish. I am also grateful to the Department of Theoretical Computer Science (TCS/CSC) for pro- viding financial support for the development of my course in Quantum Computing, which I enjoyed teaching. I dedicate this thesis to my beloved wife, Anna, who has been with me since the beginning of my journey as a doctoral student and to my daughter, Iris, who came this year to fulfill my life with happiness. Eu também gostaria de dedicar esta tese aos meus pais, Jaime e Rita, por todo o amor proporcionado aos seus filhos, e aos meus irmãos Vinicio e João por serem os irmãos maravilhosos que são. Finalmente eu gostaria de dedicar esta tese a Pedro, meu filho. Contents Contents vi I Introduction 1 1 Combinatorial Slice Theory 3 1.1 Slices.................................... 6 1.2 Slices in Concurrency Theory . 9 1.3 Slices in Combinatorial Graph Theory . 14 1.4 Slices in Equational Logic . 19 1.5 Main Contributions of this Thesis . 24 1.6 Overview of the Thesis . 26 II Slices 29 2 Slices 31 2.1 Slices and Slice Languages . 31 2.2 Operations On Slice Languages . 34 2.3 SliceGraphs................................ 38 2.4 Decidability Issues for Slice Languages . 43 3 Saturated Slice Languages 45 3.1 1-Saturation................................ 45 3.2 1-Saturated Slice Languages and Partial Orders . 49 3.3 z-Saturated Slice Languages . 50 4 Initial Applications 53 4.1 Sliced Graph Coloring . 53 4.2 Graphs that are unions of k directed paths . 55 4.3 Slice Languages and Hasse Diagrams . 57 4.4 Transitive Reduction of Slice Languages . 60 vi CONTENTS vii III Slices in Combinatorial Graph Theory 67 5 Directed Width Measures 69 5.1 Zig-Zag Number versus Other Digraph Width Measures . 71 5.2 Directed Path-Width, Directed Vertex Separation Number and Zig- ZagNumber................................ 72 6 The Monadic Second Order Logic of Graphs 75 6.1 Useful MSO Expressible Properties . 76 7 Counting Subgraphs Intersecting a z-Saturated Regular Slice Language 79 8 Slice Languages and MSO2 Properties 85 8.1 MSO2 and Saturated Slice Languages . 88 8.2 Proof of our Algorithmic Metatheorem . 89 9 Subgraph Homeomorphism 91 IV Partial Orders and Petri Nets 95 10 Petri Nets and their Partial Order Semantics 97 10.1 p/t-Nets.................................. 98 10.2Process .................................. 99 10.3 Causal vs Execution Semantics . 101 11 Interlaced Flows, Executions and Causal Orders 105 11.1 Characterization of Causal Orders and Executions in Terms of p- interlacedFlows. ............................. 108 12 Applications 111 12.1 Sliced Interlaced Flows . 111 12.2 Expressibility Theorem . 113 12.3 Verification of p/t-nets from Slice Languages . 114 12.4Synthesis .................................114 12.5 Model Checking the Partial Order Behavior of Petri Nets . 115 13 Translating Partial Order Formalisms into Slice Languages 117 13.1 Mazurkiewicz Traces . 118 13.2 Message Sequence Charts . 120 13.3 Application to Petri Nets . 124 viii CONTENTS V Slices in Equational Logic 127 14 Ordered Equational Logic 129 15 Slice Calculus 139 15.1 Slice Calculus Operators . 141 16 Provability in Ordered Equational Logic 147 17 Proof of the Congruence Operator 153 18 Proof Of the Transitivity Operator Lemma 157 19 Proof of the Substitution Operator Lemma 163 20ProofoftheRenamingOperatorLemma 167 20.1Notation..................................167 20.2 Proof of the Renaming Operator Lemma . 168 21UnitDecompositionsofaFixedEquation 175 VI Conclusions and Future Work 181 22 Conclusion 183 Bibliography 185 Part I Introduction 1 Chapter 1 Combinatorial Slice Theory In this thesis we introduce combinatorial slice theory, a theory aimed at describing how to manipulate and represent infinite families of combinatorial objects via for- mal languages over finite alphabets of slices. We call these formal languages slice languages. We will use slice theory to obtain novel algorithmic results in three fields: concurrency theory, combinatorial graph theory and logic. In the following subsections we will describe the main contributions of our theory to each of these fields. Partial Order Behavior of Petri nets Within concurrency theory slice languages will be used to represent infinite families of DAGs and infinite families of partial orders.
Recommended publications
  • Digraph Complexity Measures and Applications in Formal Language Theory
    Digraph Complexity Measures and Applications in Formal Language Theory by Hermann Gruber Institut f¨urInformatik Justus-Liebig-Universit¨at Giessen Germany November 14, 2008 Introduction and Motivation Measuring Complexity for Digraphs Algorithmic Results on Cycle Rank Applications in Formal Language Theory Discussion Overview 1 Introduction and Motivation 2 Measuring Complexity for Digraphs 3 Algorithmic Results on Cycle Rank 4 Applications in Formal Language Theory 5 Discussion H. Gruber Digraph Complexity Measures and Applications Introduction and Motivation Measuring Complexity for Digraphs Algorithmic Results on Cycle Rank Applications in Formal Language Theory Discussion Outline 1 Introduction and Motivation 2 Measuring Complexity for Digraphs 3 Algorithmic Results on Cycle Rank 4 Applications in Formal Language Theory 5 Discussion H. Gruber Digraph Complexity Measures and Applications Introduction and Motivation Measuring Complexity for Digraphs Algorithmic Results on Cycle Rank Applications in Formal Language Theory Discussion Complexity Measures on Undirected Graphs Important topic in algorithmic graph theory: Structural complexity restrictions can speed up algorithms Main result: many hard problems solvable in linear time on graphs with bounded treewidth. depending on application, also other measures interesting H. Gruber Digraph Complexity Measures and Applications Introduction and Motivation Measuring Complexity for Digraphs Algorithmic Results on Cycle Rank Applications in Formal Language Theory Discussion What about Directed
    [Show full text]
  • Complexity and Geometry of Sampling Connected Graph Partitions
    COMPLEXITY AND GEOMETRY OF SAMPLING CONNECTED GRAPH PARTITIONS LORENZO NAJT∗, DARYL DEFORDy, JUSTIN SOLOMONy Abstract. In this paper, we prove intractability results about sampling from the set of partitions of a planar graph into connected components. Our proofs are motivated by a technique introduced by Jerrum, Valiant, and Vazirani. Moreover, we use gadgets inspired by their technique to provide families of graphs where the “flip walk" Markov chain used in practice for this sampling task exhibits exponentially slow mixing. Supporting our theoretical results we present some empirical evidence demonstrating the slow mixing of the flip walk on grid graphs and on real data. Inspired by connections to the statistical physics of self-avoiding walks, we investigate the sensitivity of certain popular sampling algorithms to the graph topology. Finally, we discuss a few cases where the sampling problem is tractable. Applications to political redistricting have recently brought increased attention to this problem, and we articulate open questions about this application that are highlighted by our results. 1. Introduction. The problem of graph partitioning, or dividing the vertices of a graph into a small number of connected subgraphs that extremize an objective function, is a classical task in graph theory with application to network analytics, machine learning, computer vision, and other areas. Whereas this task is well-studied in computation and mathematics, a related problem remains relatively understudied: understanding how a given partition compares to other members of the set of possible partitions. In this case, the goal is not to generate a partition with favorable properties, but rather to compare a given partition to some set of alternatives.
    [Show full text]
  • List of NP-Complete Problems from Wikipedia, the Free Encyclopedia
    List of NP -complete problems - Wikipedia, the free encyclopedia Page 1 of 17 List of NP-complete problems From Wikipedia, the free encyclopedia Here are some of the more commonly known problems that are NP -complete when expressed as decision problems. This list is in no way comprehensive (there are more than 3000 known NP-complete problems). Most of the problems in this list are taken from Garey and Johnson's seminal book Computers and Intractability: A Guide to the Theory of NP-Completeness , and are here presented in the same order and organization. Contents ■ 1 Graph theory ■ 1.1 Covering and partitioning ■ 1.2 Subgraphs and supergraphs ■ 1.3 Vertex ordering ■ 1.4 Iso- and other morphisms ■ 1.5 Miscellaneous ■ 2 Network design ■ 2.1 Spanning trees ■ 2.2 Cuts and connectivity ■ 2.3 Routing problems ■ 2.4 Flow problems ■ 2.5 Miscellaneous ■ 2.6 Graph Drawing ■ 3 Sets and partitions ■ 3.1 Covering, hitting, and splitting ■ 3.2 Weighted set problems ■ 3.3 Set partitions ■ 4 Storage and retrieval ■ 4.1 Data storage ■ 4.2 Compression and representation ■ 4.3 Database problems ■ 5 Sequencing and scheduling ■ 5.1 Sequencing on one processor ■ 5.2 Multiprocessor scheduling ■ 5.3 Shop scheduling ■ 5.4 Miscellaneous ■ 6 Mathematical programming ■ 7 Algebra and number theory ■ 7.1 Divisibility problems ■ 7.2 Solvability of equations ■ 7.3 Miscellaneous ■ 8 Games and puzzles ■ 9 Logic ■ 9.1 Propositional logic ■ 9.2 Miscellaneous ■ 10 Automata and language theory ■ 10.1 Automata theory http://en.wikipedia.org/wiki/List_of_NP-complete_problems 12/1/2011 List of NP -complete problems - Wikipedia, the free encyclopedia Page 2 of 17 ■ 10.2 Formal languages ■ 11 Computational geometry ■ 12 Program optimization ■ 12.1 Code generation ■ 12.2 Programs and schemes ■ 13 Miscellaneous ■ 14 See also ■ 15 Notes ■ 16 References Graph theory Covering and partitioning ■ Vertex cover [1][2] ■ Dominating set, a.k.a.
    [Show full text]
  • Event Structures and Trace Monoids
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 91 (1991) 285-313 285 Elsevier Event structures and trace monoids Brigitte Rozoy* L.I.U.C. Universitt. 14032 CAEN Cedex, France P.S. Thiagarajan** The Institute of Mathematical Sciences, Madras 600 113, India Communicated by M. Nivat Received May 1989 Abstract Rozoy, B. and P.S. Thiagarajan, Event structures and trace monoids, Theoretical Computer Science 91 (1991) 285-313. Event structures are a poset-based model for describing the behaviour of distributed systems. They give rise to a well-understood class of Scott domains. Event structures are also related to Petri nets in a fundamental way. Trace monoids are a string-based formalism for describing the behaviour of distributed systems. They have an independent theory rooted in the theory of formal languages. Here we obtain a representation of trace monoids in terms of a subclass of labelled event structures. Rozoy, B. and P.S. Thiagarajan, Event structures and trace monoids, Theoretical Computer Science 91 (1991) 2855313. Les structures d’evenements peuvent itre vus comme un modele de representation du comportement des systemes distribues, base sur les ensembles partiellement ordonnes. IIs sont associes de facon classique a une classe de domaines de Scott, et aux reseaux de Petri. Les mono’ides de traces constituent aussi un moddle de description du fonctionnement des systemes distribues, a partir dun formalisme de theorie des langages. Cet article etablit entre eux des theoremes de representation. 0. Introduction In recent years, languages accompanied by a commutability relation (over the alphabet of the language) have received a good deal of attention.
    [Show full text]
  • On the Theory of One-Step Rewriting in Trace Monoids
    On the theory of one-step rewriting in trace monoids ¡ ¢ Dietrich Kuske and Markus Lohrey £ Department of Mathematics and Computer Science University of Leicester, LEICESTER, LE1 7RH, UK ¤ Universitat¨ Stuttgart, Institut fur¨ Informatik, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany [email protected], [email protected] Abstract. We prove that the first-order theory of the one-step rewriting rela- tion associated with a trace rewriting system is decidable and give a nonelemen- tary lower bound for the complexity. The decidability extends known results on semi-Thue systems but our proofs use new methods; these new methods yield the decidability of local properties expressed in first-order logic augmented by modulo-counting quantifiers. Using the main decidability result, we describe a class of trace rewriting systems for which the confluence problem is decidable. The complete proofs can be found in the Technical Report [14]. 1 Introduction Rewriting systems received a lot of attention in mathematics and theoretical computer science and are still an active field of research. Historically, rewriting systems were in- troduced to solve word problems in certain structures [28]. By the work of Markov [18] and Post [24], this hope vanished as they showed that there exist fixed semi-Thue sys- tems with an undecidable word problem. Despite this result, there are plenty of rewriting systems with a decidable word problem, the most famous class being that of confluent and terminating systems. By Newman’s Lemma, confluence can be decided for termi- nating semi-Thue systems as well as for terminating term rewriting systems.
    [Show full text]
  • Elementary Graph Theory
    Elementary Graph Theory Robin Truax March 2020 Contents 1 Basic Definitions 2 1.1 Specific Types of Graphs . .2 1.2 Paths and Cycles . .3 1.3 Trees and Forests . .3 1.4 Directed Graphs and Route Planning . .4 2 Finding Cycles and Trails 5 2.1 Eulerian Circuits and Eulerian Trails . .5 2.2 Hamiltonian Cycles . .6 3 Planar Graphs 6 3.1 Polyhedra and Projections . .7 3.2 Platonic Solids . .8 4 Ramsey Theory 9 4.1 Ramsey's Theorem . .9 4.2 An Application of Ramsey's Theorem . 10 4.3 Schur's Theorem and a Corollary . 10 5 The Lindstr¨om-Gessel-ViennotLemma 11 5.1 Proving the Lindstr¨om-Gessel-ViennotLemma . 11 5.2 An Application in Linear Algebra . 12 5.3 An Application in Tiling . 13 6 Coloring Graphs 13 6.1 The Five-Color Theorem . 14 7 Extra Topics 15 7.1 Matchings . 15 1 1 Basic Definitions Definition 1 (Graphs). A graph G is a pair (V; E) where V is the set of vertices and E is a list of \edges" (undirected line segments) between pairs of (not necessarily distinct) vertices. Definition 2 (Simple Graphs). A graph G is called a simple graph if there is at most one edge between any two vertices and if no edge starts and ends at the same vertex. Below is an example of a very famous graph, called the Petersen graph, which happens to be simple: Right now, our definitions have a key flaw: two graphs that have exactly the same setup, except one vertex is a quarter-inch to the left, are considered completely different.
    [Show full text]
  • On Balanced Separators, Treewidth, and Cycle Rank
    Journal of Combinatorics Volume 3, Number 4, 669–681, 2012 On balanced separators, treewidth, and cycle rank Hermann Gruber We investigate relations between different width parameters of graphs, in particular balanced separator number, treewidth, and cycle rank. Our main result states that a graph with balanced separator number k has treewidth at least k but cycle rank at · n most k (1 + log k ), thus refining the previously known bounds, as stated by Robertson and Seymour (1986) and by Bodlaender et al. (1995). Furthermore, we show that the improved bounds are best possible. AMS 2010 subject classifications: 05C40, 05C35. Keywords and phrases: Vertex separator, treewidth, pathwidth, band- width, cycle rank, ordered coloring, vertex ranking, hypercube. 1. Preliminaries Throughout this paper, log x denotes the binary logarithm of x,andlnx denotes the natural logarithm of x. 1.1. Vertex separators We assume the reader is familiar with basic notions in graph theory, as contained in [8]. In a connected graph G, a subset X of the vertex set V (G) is a vertex separator for G, if there exists a pair x, y of vertices lying in distinct components of V (G) − X,orifV (G) − X contains less than two vertices. Beside vertex separators, also so-called edge separators are studied in the literature. As we shall deal only with the former kind of separators, we will mostly speak just of separators when referring to vertex separators. If G has several connected components, we say X is a separator for G if it is a separator for some component of G.AseparatorX is (inclusion) minimal if no other separator is properly contained in it.
    [Show full text]
  • Title on Enumeration of Tree-Like Graphs and Pairwise Compatibility
    On Enumeration of Tree-Like Graphs and Pairwise Title Compatibility Graphs( Dissertation_全文 ) Author(s) Naveed, Ahmed Azam Citation 京都大学 Issue Date 2021-03-23 URL https://doi.org/10.14989/doctor.k23322 Parts of this thesis have been published in: Naveed Ahmed Azam, Aleksandar Shurbevski, Hiroshi Nagamochi, “A method for enumerating pairwise compatibility graphs with a given number of vertices”, Discrete Applied Mathematics 2020, doi: 10.3390/e22090923. Copyright (c) 2020 Elsevier Naveed Ahmed Azam, Aleksandar Shurbevski and Hiroshi Right Nagamochi, “On the Enumeration of Minimal Non-Pairwise Compatibility Graphs”, In Proceedings of The 26th International Computing and Combinatorics Conference (COCOON 2020), Computing and Combinatorics, Editors D. Kim et al., LNCS 12273, pp. 372‒383, 2020, https://doi.org/10.1007/978-3-030-58150-3_30 Copyright (c) 2020 Springer Nature Switzerland Type Thesis or Dissertation Textversion ETD Kyoto University On Enumeration of Tree-Like Graphs and Pairwise Compatibility Graphs Naveed Ahmed Azam On Enumeration of Tree-Like Graphs and Pairwise Compatibility Graphs Naveed Ahmed Azam Department of Applied Mathematics and Physics Graduate School of Informatics Kyoto University Kyoto, Japan UNIVE O R T S O I T Y Y K F KYOTO JAPAN O 7 U 9 N 8 DED 1 February 24, 2021 Doctoral dissertation submitted to the Graduate School of Informatics, Kyoto University in partial fulfillment of the requirement for the degree of DOCTOR OF APPLIED MATHEMATICS Preface Graph enumeration with given constraints is an interesting problem considered to be one of the fundamental problems in graph theory, with many applications in natural sciences and engineering such as bioinformatics and computational chemistry.
    [Show full text]
  • Digraph Width Measures in Parameterized Algorithmics
    Digraph Width Measures in Parameterized Algorithmics Robert Ganiana, Petr Hlinˇen´yb, Joachim Kneisc, Alexander Langerc, Jan Obdrˇz´alekb, Peter Rossmanithc aVienna University of Technology, Austria bFaculty of Informatics, Masaryk University, Brno, Czech Republic cTheoretical Computer Science, RWTH Aachen University, Germany Abstract In contrast to undirected width measures such as tree-width, which have pro- vided many important algorithmic applications, analogous measures for di- graphs such as directed tree-width or DAG-width do not seem so successful. Several recent papers have given some evidence on the negative side. We confirm and consolidate this overall picture by thoroughly and exhaustively studying the complexity of a range of directed problems with respect to various parameters, and by showing that they often remain NP-hard even on graph classes that are restricted very beyond having small DAG-width. On the positive side, it turns out that clique-width (of digraphs) performs much better on virtually all considered problems, from the parameterized complexity point of view. Keywords: digraph, parameterized complexity, tree-width, DAG-width, DAG-depth, cycle rank, clique-width. 1. Introduction The very successful concept of graph tree-width was introduced in the context of the Graph Minors project by Robertson and Seymour [RS86, RS91], and it turned out to be very useful for efficiently solving many graph problems (including NP-hard ones). In a nutshell, tree-width measures tree-likeness of a graph. Trees themselves, for example, have tree-width one and series-parallel graphs have tree-width two. Many graphs occurring in practical applications have small tree-width. This comes as no big surprise as one often deals with hierarchical structures that are inherently similar to trees.
    [Show full text]
  • The Star Problem and the Finite Power Property in Trace Monoids: Reductions Beyond C4
    CORE Information and Computation 176, 22–36 (2002) Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connectordoi:10.1006/inco.2002.3152 The Star Problem and the Finite Power Property in Trace Monoids: Reductions beyond C4 Daniel Kirsten Institute of Algebra, Dresden University of Technology, D-01062 Dresden, Germany E-mail: [email protected] ∼ URL: www.math.tu-dresden.de/ kirsten Received April 18, 2001 We deal with the star problem in trace monoids which means to decide whether the iteration of K ={ , }∗ ×···× a recognizable trace language is recognizable. We consider trace monoids n a1 b1 ∗ {an, bn} . Our main result asserts that the star problem is decidable in some trace monoid M iffitis decidable in the biggest Kn submonoid in M. Consequently, future research on the star problem can focus on the trace monoids Kn. We develop the main results of the paper for the finit power problem. Then, we establish the link to the star problem by applying the recently shown decidability equivalence between the star problem and the finit power problem (D. Kirsten and G. Richomme, 2001, Theory Comput. Systems 34, 193–227). C 2002 Elsevier Science (USA) 1. INTRODUCTION We deal with the star problem in free, partially commutative monoids, also known as trace monoids. The star problem was raised by Ochma´nskiin 1984 [29]. It means to decide whether the iteration of a recognizable trace language is recognizable. Due to a theorem by Richomme from 1994 [35] the star ∗ ∗ problem is decidable in trace monoids which do not contain a submonoid isomorphic to {a, b} ×{c, d} .
    [Show full text]
  • Parameterized Algorithms on Width Parameters of Graphs
    Masaryk University Faculty of Informatics } Û¡¢£¤¥¦§¨ª«¬­Æ !"#°±²³´µ·¸¹º»¼½¾¿45<ÝA| Parameterized Algorithms on Width Parameters of Graphs Doctoral Thesis Proposal Robert Ganian Supervisor: doc. RNDr. Petr Hlinˇen´y, Ph.D. Acknowledgement I would like to thank doc. RNDr. Petr Hlinˇen´y, Ph.D. for his guidance and support during my studies. Contents 1 Preliminaries ..................................... ....... 3 1.1 Introduction.................................... ..... 3 1.2 Clique-width and Rank-width of undirected graphs . 4 1.3 Directed Graphs .................................. ... 6 1.4 Aimofthethesis.................................. ... 7 2 ObtainedResults................................... ...... 9 2.1 Graphs of bounded rank-width ....................... 9 2.2 Width measures of directed graphs ................... 13 3 Goalsofthethesis.................................. ...... 16 3.1 Schedule and expected outcomes ..................... 17 1 Preliminaries 1.1 Introduction The design of graph algorithms has become a focal point of computer science research in the past decades for practical as well as theoretical reasons. Unfortunately, most of the interesting problems have been proved to be NP-complete in general. One way to deal with this obstacle is to design parameterized algorithms (see e.g. [14]) – the idea is that, although a problem might be NP-hard in general, restricting a certain parameter to constant size would make it possible to design a polynomial algorithm for solving the problem. Given an instance of a problem with input size x parameterized by par, a parameterized algorithm is in FPT if it runs in time O(p(x) ⋅ f(par)) for some polynomial p and function f. This is the ideal case, since the degree of the polynomial does not depend on the value of the parameter.
    [Show full text]
  • INSTITUT FÜR INFORMATIK Finite Automata, Digraph Connectivity
    T U M INSTITUT FÜR INFORMATIK Finite Automata, Digraph Connectivity, and Regular Expression Size Hermann Gruber Markus Holzer TUM-I0725 Dezember 07 TECHNISCHE UNIVERSITÄT MÜNCHEN TUM-INFO-12-I0725-0/1.-FI Alle Rechte vorbehalten Nachdruck auch auszugsweise verboten c 2007 Druck: Institut für Informatik der Technischen Universität München Finite Automata, Digraph Connectivity, and Regular Expression Size Hermann Gruber Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingstraße 67, 80538 München, Germany [email protected] Markus Holzer Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching, Germany [email protected] Abstract We study some descriptional complexity aspects of regular expressions. In particular, we give lower bounds on the minimum required size for the conversion of deterministic finite automata into regular expressions and on the required size of regular expressions resulting from applying some basic language operations on them, namely intersection, shuffle, and complement. Some of the lower bounds obtained are asymptotically tight, and, notably, the examples we present are over an alphabet of size two. To this end, we develop a new lower bound technique that is based on the star height of regular languages. It is known that for a restricted class of regular languages, the star height can be determined from the digraph underlying the transition structure of the minimal finite automaton accepting that language. In this way, star height is tied to cycle rank, a structural complexity measure for digraphs proposed by Eggan and Büchi, which measures the degree of connectivity of directed graphs. This measure, although a robust graph theoretic notion, appears to have remained widely unnoticed outside formal language theory.
    [Show full text]