1. Introduction Hedgehog Spaces Are an Interesting Source of Examples in Point-Set Topol- Ogy
Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 21{26 FRAME PRESENTATIONS OF COMPACT HEDGEHOGS AND THEIR PROPERTIES IGOR ARRIETA, JAVIER GUTIERREZ´ GARC´IA AND JORGE PICADO Dedicated to Professor Bernhard Banaschewski on the occasion of his 95th birthday Abstract: This paper considers the compact hedgehog as a frame presented by generators and relations, based on the presentation of the frame of extended real numbers. The main focus will be on the point-free version of continuous and semi- continuous functions that arise from it, and their application in characterizations of variants of collectionwise normality. The variants to be considered are defined by selections of adequate families of sublocales and their characterizations depend on lattice-theoretic properties of the selected families. This way insertion and exten- sion results for semicontinuous and continuous functions with values in the compact hedgehog frame are generalized and unified. Keywords: Hedgehog space, compact hedgehog, frame, locale, zero sublocale, c z- and zκ-embedded sublocales, collectionwise normality, total collectionwise normality, compact hedgehog-valued frame homomorphism, insertion results, sublocale selection. 2020 Mathematics Subject Classification: 06D22, 18F70, 54D15. 1. Introduction Hedgehog spaces are an interesting source of examples in point-set topol- ogy. They constitute, in fact, three different classes of spaces [1]. Here we are interested in the so-called compact hedgehog spaces, from a point-free viewpoint. As the name suggests, the hedgehog can be described as a set of spines identified at a single point. Given a cardinal κ and a set I of cardinality S κ, the hedgehog with κ spines J(κ) is the disjoint union i2I R × fig of κ copies (the spines) of the extended real line identified at −∞: The compact hedgehog space ΛJ(κ) is the hedgehog endowed with the (com- pact) topology generated by the subbasis f (r; |)i j r 2 Q; i 2 I g [ f (|; r)i j r 2 Q; i 2 I g where (r; |)i := (r; +1] × fig and (|; r)i := J(κ) n ([r; +1] × fig).
[Show full text]