Brackish Water Desalination Using Reverse Osmosis and Capacitive
Total Page:16
File Type:pdf, Size:1020Kb
*Manuscript Click here to view linked References 1 Brackish Water Desalination using Reverse Osmosis and 2 Capacitive Deionization at the Water-Energy Nexus 3 Shu-Yuan Pan,a* Andrew Z. Haddad,b Arkadeep Kumar,b and Sheng-Wei Wangc 4 a Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 5 4, Roosevelt Road, Taipei City, 10617 Taiwan (R.O.C.). 6 b Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United 7 States. 8 c Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei 9 City, 25137 Taiwan (R.O.C.). 10 * Corresponding author. E-mails: [email protected] (SY Pan). 11 Abstract 12 In this article, we present a critical review of the reported performance of reverse osmosis (RO) and 13 capacitive deionization (CDI) for brackish water (salinity < 5.0 g/L) desalination from the aspects of 14 engineering, energy, economy and environment. We first illustrate the criteria and the key 15 performance indicators to evaluate the performance of brackish water desalination. We then 16 systematically summarize technological information of RO and CDI, focusing on the effect of key 17 parameters on desalination performance, as well as energy-water efficiency, economic costs and 18 environmental impacts (including carbon footprint). We provide in-depth discussion on the 19 interconnectivity between desalination and energy, and the trade-off between kinetics and energetics 20 for RO and CDI as critical factors for comparison. We also critique the results of technical-economic 21 assessment for RO and CDI plants in the context of large-scale deployment, with focus on 1 22 lifetime-oriented consideration to total costs, balance between energy efficiency and clean water 23 production, and pretreatment/post-treatment requirements. Finally, we illustrate the challenges and 24 opportunities for future brackish water desalination, including hybridization for energy-efficient 25 brackish water desalination, co-removal of specific components in brackish water, and sustainable 26 brine management with innovative utilization. Our study reveals that both RO and CDI should play 27 important roles in water reclamation and resource recovery from brackish water, especially for inland 28 cities or rural regions. 29 30 Keywords: electrokinetics; energy consumption; water productivity; brine utilization; carbon 31 footprint; hybridization. 2 32 Outlines 33 Abstract ................................................................................................................................................. 1 34 1. Introduction ...................................................................................................................................... 5 35 2. Criteria and Key Performance Indicators for Brackish Water Desalination ............................ 8 36 2.1 Treatment Capacity and Recovery ........................................................................................... 9 37 2.2 Specific Energy Consumption (SEC) of a Desalination Process ........................................... 10 38 2.3 Operation and Maintenance (O&M) Costs ............................................................................ 11 39 2.4 Environmental Impacts and Carbon Footprints ..................................................................... 12 40 2.5 Summary ................................................................................................................................ 13 41 3. Performance Evaluation of RO for Brackish Water Desalination ............................................ 14 42 3.1 Effect of Membranes and Configurations on Desalination Performance .............................. 15 43 3.2 Energy Consumption and Throughput ................................................................................... 17 44 3.3 Costs Estimation .................................................................................................................... 19 45 3.3.1. Plant sizes....................................................................................................................... 19 46 3.3.2. Energy sources ............................................................................................................... 20 47 3.3.3. Membrane replacement .................................................................................................. 20 48 3.3.4. Total costs ...................................................................................................................... 22 49 3.4 Carbon Footprint and Life-cycle Environmental Impacts ..................................................... 22 50 3.5 Summary ................................................................................................................................ 23 51 4. Performance Evaluation of CDI for Brackish Water Desalination ........................................... 24 52 4.1 Effect of Electrodes and Configurations on Desalination Performance ................................ 24 53 4.2 Energy Consumption and Throughput ................................................................................... 29 54 4.3 Costs Estimation .................................................................................................................... 31 55 4.3.1. Energy consumption ...................................................................................................... 32 56 4.3.2. Electrodes and membranes ............................................................................................ 32 3 57 4.3.3. Total costs ...................................................................................................................... 33 58 4.4 Carbon Footprint and Life-cycle Environmental Impacts ..................................................... 34 59 4.5 Summary ................................................................................................................................ 35 60 5. Trade-off between Kinetics and Energetics ................................................................................. 36 61 6. Technical-Economic Assessment ................................................................................................... 39 62 6.1 Lifetime-Oriented Considerations to Total Costs .................................................................. 39 63 6.2 Energy Efficiency and Clean Water Productivity .................................................................. 42 64 6.3 Pretreatment for Prolonging Life-time of Key Components ................................................. 44 65 6.4 Post-treatment Options for Sustainable Brine Management .................................................. 47 66 6.5 Summary ................................................................................................................................ 48 67 7. Perspectives, Prospects, and Priority Research Directions ........................................................ 50 68 7.1 Hybridization for Energy-Efficient Brackish Water Desalination ......................................... 50 69 7.2 Co-removal of Specific Components in Brackish Water ....................................................... 53 70 7.3 Sustainable Brine Management with Innovative Utilization ................................................. 54 71 8. Concluding remarks ...................................................................................................................... 56 72 Conflicts of interest ............................................................................................................................ 57 73 Acknowledgements ............................................................................................................................ 57 74 References ........................................................................................................................................... 58 75 76 4 77 1. Introduction 78 Due to rapid population growth and resource depletion, freshwater stress and scarcity are one of 79 the most severe challenges around the world, especially in countries such as Saudi Arabia (Aljohani 80 2017), Jordan (Qasim et al. 2018), and Tunisia (Walha et al. 2007). Seawater (a salinity ~35 g/L) is 81 considered an infinite water resource, and seawater desalination by reverse osmosis (RO) using 82 semipermeable membranes has been practiced at commercial scales for decades at numerous 83 countries such as Israel (Segal et al. 2018), Australia (Linge et al. 2013), Spain (Quevedo et al. 2011), 84 and the US (Rao et al. 2018), and is believed to be the most optimized technology for seawater 85 desalination (USDOE 2014). Existing seawater RO (SWRO) plants operate near the thermodynamic 86 limit, where the applied pressure is only 10−20% higher than the osmotic pressure of the concentrate 87 (Elimelech and Phillip 2011). The energy consumption of an industrial-scale SWRO is typically on 88 the order of 2.5−4.0 kWh/m3 (Shannon et al. 2008, Subramani et al. 2014, Yangali-Quintanilla et al. 89 2011), producing freshwater at an average cost of 0.5–1.2 USD/m3 (Kim et al. 2010a, Nanda 2018). 90 However, RO becomes less energy efficient for brackish water desalination due to the high energy 91 consumption per ion (Amy et al. 2017). 92 Brackish water (salinity of 1−10 g/L (Elimelech and Phillip 2011)) is an essential water 93 desalination alternative when compared to seawater, potentially enabling the movement of the 94 water-energy nexus away