Quick viewing(Text Mode)

Categories of Representations of Cyclic Posets

Categories of Representations of Cyclic Posets

CATEGORIES OF REPRESENTATIONS OF CYCLIC POSETS

KIYOSHI IGUSA, BRANDEIS UNIVERSITY

0.1. Abstract. This is joint work with Gordana Todorov. Let R = K[[t]] where K is any field. Given a “recurrent” cyclic poset X and “admissible ” φ,weconstructanR-linear Frobenius category φ(X). I will go over the definition of a Frobenius category and indicate why our constructionF satisfies each condition. By a well-known result of Happel, the stable category φ(X)willbeatriangulated category over K.Ineachexampleinthechartbelow, (CX)willbeaclustercategory: Cφ cyclic poset automorphism cluster category comments

Xφ (X) Cφ

Zn φ(i)=i +1 (An 3)2-CY 1 < 2 <

S1 id not 2-CY but has clusters C continuous cluster category Y [1] ∼= Y

S1 Z id ˜ not 2-CY (Y [1] = Y ) ∗ C ∼ φ(x, i)=(x, i +1) ˜￿ 2-CY containsC Zm Z φ(i, j)=(i +1,j) m-cluster category (m +1)-CY ∗ φ(m, j)=(1,j+1) oftypeA ∞

3 3-cluster category (1)/3Z Z φ3(x, i)=(x, i +1) 4-CY P ∗ of type A ￿ ∞ ￿ Iwillgooversomeoftheeasierexamplesofthisconstruction.CYmeansCalabi-Yau.

1 x

0.2. Cyclic poset. is same as periodic poset X˜.i.e. poset automorphism σ : X˜ X˜ so that x<σxfor all x. Also: ∃ → ( x, y X˜) x σjy for some j Z. • ∀ ∈ ≤ ∈ ˜ (1) Zn: X = Z, σ(x)=x + n (n fixed). (2) X˜ = (1) (from Schmidmeier’s lecture), σ :goupthreesteps. P (3) X˜ Z means X˜ Z with lexicographic (from van Roosmalen). ∗ × Let X =setofσ orbits. How to describe cyclic poset structure just in terms of X? (1) Choose representativex ˜ X˜ for each orbit x X. (2) ( x, y X)letb = b(x, y∈)beminimalsothat˜∈x σby˜. (3) Let∀ c =∈δb: ≤ c(xyz):=b(xy)+b(yz) b(xz) − Then c : X3 N is independent of the choice of representativesx ˜. → X is in cyclic order iff c(xyz) 1. In that case: • ≤ 0ifxyzincyclicorder c(xyz)= ￿1otherwise

2 x

Proposition 0.2.1. The cyclic poset structure on a X is uniquely determined by the c : X3 N which is an arbitrary reduced cocycle ( reduced means c(xxy)=0=c(xyy). cocycle→ means δc =0.) 0.3. Representations. Definition 0.3.1. A representation M of (X, c)overR is (1) An R-module M for each x X˜ so that M = M . x ∈ x σx (2) An R-linear map My Mx for x

3 x

0.4. Frobenius category. Definition 0.4.1. Let (X)denotethecategoryofallpairs(P, d)whereP (X) and d : P P so thatFd2 = t (mult by t). f :(P, d) (Q, d)aremaps∈P f : P Q→so that df = fd. · → → Theorem 0.4.2. In all examples on page 1, (X) is Krull-Schmidt with indecom- posable objects: F

β 0 β ￿ M(x, y):= Px Py, : Px Py ⊕ α 0 α ￿ ￿ ￿ ￿￿ with αβ = t, βα = t. · · Lemma 0.4.3. The functor G : (X) (X) given by P →F t 0 t ￿ · GP := P P, : P P ⊕ 10 id ￿ ￿ ￿ ￿￿ is both left and right adjoint to the forgetful functor F : (X) (X). F →P

4 x

Theorem 0.4.4. For any cyclic poset X, (X) is a Frobenius category where a sequence F (A, d) (B,d) (C, d) → → is defined to be exact in (X) if A B C is (split) exact in (X). GP are the projective injective objects.F f = g iff→f →g = ds + sd for some s :PP Q. − → 0.5. Twisted version. An automorphism φ of X is admissible if: x φ(x) φ2(x) σx ≤ ≤ ≤ for all x X˜.Thenweget ∈ η ξ P x φP = P x P x −→ x φ(x) −→ x giving natural transformations η ξ P P φP P P −→ −→ Definition 0.5.1. Let φ(X)bethefullsubcategoryof (X)ofall(P, d)whered factors through η : P F φP . F P → Theorem 0.5.2. (X) is a Frobenius category with projective-injective objects Fφ ξP 0 ξP ￿ GφP := P φP, : P η φP ⊕ ηP 0 P ￿ ￿ ￿ ￿￿

5 x

0.6. m-cluster categories. Theorem 0.6.1. Let m 3, let X be a cyclically ordered set (equivalently, c(xyz) ≥ ≤ 1), and φ is an admissible automorphism of X Z so that φm(x, i)=(x, i +1)then ∗ φ(X Z) is (m +1)-Calabi-Yau. F ∗ On Zm Z let φ(i, j)=(i +1,j)fori

6 x

Example 0.6.4. (m =5).Exampleofamaximalcompatiblesetof6-rigidobjectsin φ(Z5 Z). M(x, y)isarcfromx to y (horizontal if standard, vertical if nonstandard). CompatibleC ∗ arcs do not cross. There is 8-gon in center. Other regions have 7 sides. 11111000 00 1 1 1 1 1 − − − − − E D C B ￿ A E D C B A E D C B A

7-gon X1

Y1 7-gon Y2 7-gon 8-gon Y1 Y2

X1 7-gon

A B C D E A B C D E A ￿ B C D E 1 1 1 1 10 0 0 0 0 1 1 1 1 1 − − − − − Standard: X1 = M(A0,B1)(horizontal). Y1 = M(C1,E 1), Y2 = M(A 1,D1)arenonstandardbut(m +1)-rigid(vertical). − − Notation: (1,j)=Aj, (2,j)=Bj, etc.

Thank you for you attention!

Department of Mathematics, Brandeis University, Waltham, MA 02454 E-mail address: [email protected]

7