4. Groups of Permutations 1

Total Page:16

File Type:pdf, Size:1020Kb

4. Groups of Permutations 1 4. Groups of permutations 1 4. Groups of permutations Consider a set of n distinguishable objects, fB1;B2;B3;:::;Bng. These may be arranged in n! different ways, called permutations of the set. Permu- tations can also be thought of as transformations of a given ordering of the set into other orderings. A convenient notation for specifying a given permutation operation is 1 2 3 : : : n ! , a1 a2 a3 : : : an where the numbers fa1; a2; a3; : : : ; ang are the numbers f1; 2; 3; : : : ; ng in some order. This operation can be interpreted in two different ways, as follows. Interpretation 1: The object in position 1 in the initial ordering is moved to position a1, the object in position 2 to position a2,. , the object in position n to position an. In this interpretation, the numbers in the two rows of the permutation symbol refer to the positions of objects in the ordered set. Interpretation 2: The object labeled 1 is replaced by the object labeled a1, the object labeled 2 by the object labeled a2,. , the object labeled n by the object labeled an. In this interpretation, the numbers in the two rows of the permutation symbol refer to the labels of the objects in the ABCD ! set. The labels need not be numerical { for instance, DCAB is a well-defined permutation which changes BDCA, for example, into CBAD. Either of these interpretations is acceptable, but one interpretation must be used consistently in any application. The particular application may dictate which is the appropriate interpretation to use. Note that, in either interpre- tation, the order of the columns in the permutation symbol is irrelevant { the columns may be written in any order without affecting the result, provided each column is kept intact. The chronological order in which the objects are rearranged doesn't matter. 1 2 3 4 ! As an example, consider the action of the permutation 4 1 3 2 on the ordered set wxyz. Using interpretation 1, the first object, w, is moved to the 4th position; the second object, x, to the 1st position; the third object, y, to the 3rd position; the fourth object, z, to the 2nd position, producing the final order xzyw. In order to use interpretation 2, the objects in the Introductory Algebra for Physicists Michael W. Kirson 4. Groups of permutations 2 set must be relabeled | x1 = w; x2 = x; x3 = y; x4 = z | after which the label 1 is replaced by 4, the label 2 by 1, the label 3 by 3 and the label 4 by 2, producing the final order x4x1x3x2 = zwyx. Both interpretations lead to well-defined permutations of the symbols w; x; y; z, but give different results, so it is essential to specify the interpretation being used. Now consider the effect of multiplying permutations, where multiplication is defined as consecutive action of two permutations. (Recall the standard convention that the right-hand factor in a product acts first, followed by the left-hand factor.) On the result of the above example, act with the permu- 1 2 3 4 ! tation . Using interpretation 1, it acts on xzyw to produce 4 3 2 1 1 2 3 4 ! wyzx, which is produced from wxyz by the permutation . 1 4 2 3 1 2 3 4 ! 1 2 3 4 ! 1 2 3 4 ! This multiplication can be written = . 4 3 2 1 4 1 3 2 1 4 2 3 By reordering the columns in the left-hand factor of the product so that the top row reads the same as the bottom row of the right-hand factor, this can 4 1 3 2 ! 1 2 3 4 ! 1 2 3 4 ! be rewritten in the form = . 1 4 2 3 4 1 3 2 1 4 2 3 In this form, it is evident that multiplication can be carried out by \cancel- ing" the bottom row of the right-hand factor against the identical top row of the left-hand factor. The result has the top row of the right-hand factor and the bottom row of the left-hand factor. A moment's consideration will show that this is a universal feature (it simply says, for example, move the 1st object to the 4th position in the first step and the 4th object to the 1st position in the second step, leaving the 1st object in the 1st position overall, and so on), which makes multiplication of permutations trivial. The same process can be carried out using interpretation 2. Now the second permutation acts on zwyx (which is x4x1x3x2) to produce x1x4x2x3, or wzxy, which is also the result of acting on wxyz with the permutation 1 2 3 4 ! . The multiplication is expressed in permutation symbols in 1 4 2 3 exactly the same way as in interpretation 1, and the same rule of multiplica- tion by cancellation can be applied. [The two interpretations again lead to different final results, wyzx and wzxy, even though they are applied to the same symbolic multiplication.] The cancellation rule for evaluating products of permutations shows triv- ially that the multiplication is associative. There is an identity permutation Introductory Algebra for Physicists Michael W. Kirson 4. Groups of permutations 3 1 2 : : : n ! , and the inverse of any permutation is obtained by ex- 1 2 : : : n changing its top and bottom rows. So these transformations constitute a group, where multiplication is understood as consecutive action of the trans- formations. 1. A permutation of the set fBig, followed by another permutation, clearly produces a permutation of the original set, so the permutations are closed under multiplication. 2. The multiplication of permutations has been shown to be associative. (A permutation can be regarded as a mapping of the set of ordered n-tuples of integers, confirming that the multiplication is associative.) 3. The permutation which leaves the ordered set unchanged is clearly an identity. 4. Given a permutation which changes an initial ordering of the set fBig into a final ordering, the permutation which changes the final ordering back into the initial ordering is the inverse of the starting permutation. So the set of all permutations of n objects forms a group, called the symmetric group on n objects, denoted Sn. It has order n!. An alternative, more economical and very efficient notation for permu- tations is provided by cycles.A cycle is a sequence of up to n labels, (a1; a2; a3; : : : ; am)(m ≤ n) and represents a permutation symbol a a a : : : a a b : : : b ! 1 2 3 m−1 m 1 n−m , a2 a3 a4 : : : am a1 b1 : : : bn−m where fbig are all the n − m labels not included in the set faig. It permutes the labels faig cyclically and leaves the labels fbig unchanged. The number of labels it contains is the degree of the cycle. A cycle of degree m is referred to as an m-cycle. It is easily seen that two cycles with no label in common commute with one another, while two cycles with any labels in common will generally not commute with one another. The order of the entries in a cycle is significant, but since it is cyclic, the starting point is irrelevant: (a1; a2; : : : ; am) = (a2; : : : ; am; a1), etc., so an m-cycle can be written in m different but equivalent ways. For example, (a1; a2; a3; a4) = (a2; a3; a4; a1) = (a3; a4; a1; a2) = (a4; a1; a2; a3). The order of a cycle is equal to its degree | acting m times with an m- cycle restores all labels to their starting positions, i.e. is equal to the identity. Introductory Algebra for Physicists Michael W. Kirson 4. Groups of permutations 4 Any 1-cycle is equal to the identity, as is any product of 1-cycles. A 2-cycle is called a transposition, corresponds to interchanging its two entries, and is its own inverse. Any cycle can be decomposed into a (non-unique) product of transpositions. For instance, (1; 2; 3; : : : ; n) = (1; n)(1; n − 1) ::: (1; 3)(1; 2). [This is not unique because the product (a; b)(a; b) = 1 can be inserted any- where.] Any permutation can be uniquely resolved into a product of non-overlapping 1 2 3 : : : n ! cycles | in the permutation , rearrange the columns a1 a2 a3 : : : an 0 ! 1 a1 : : : am−1 ::: 0 so that it starts = (1; a1; : : : ; am−1); then rear- a1 aa1 ::: 1 ::: range the remaining columns in similar cyclic order, beginning with a label 0 not in the set f1; a1; aa1 ; : : : ; am−1g; and continue until all labels are ex- hausted. It is customary to omit 1-cycles from this resolution, which is self-evidently unique. The result of the resolution can be characterised by listing the number of r-cycles, νr, for each value of r from 1 to n. The list fνrg defines the cycle structure of the permutation. A permutation which is resolved into cycles all of the same degree is called a regular permutation and its order is equal to the degree of its cycles. A regular permutation has either only 1-cycles, in which case it is the identity permutation, or no 1-cycles, in which case it leaves no symbol unpermuted. The symmetric group on n objects Sn, of order n!, has many subgroups, each of which is a group of permutations. A group of permutations is regular if all its elements are regular. If all the elements of a group of permutations, except the identity, leave no symbol unpermuted, then the group is regular.
Recommended publications
  • On the Permutations Generated by Cyclic Shift
    1 2 Journal of Integer Sequences, Vol. 14 (2011), 3 Article 11.3.2 47 6 23 11 On the Permutations Generated by Cyclic Shift St´ephane Legendre Team of Mathematical Eco-Evolution Ecole Normale Sup´erieure 75005 Paris France [email protected] Philippe Paclet Lyc´ee Chateaubriand 00161 Roma Italy [email protected] Abstract The set of permutations generated by cyclic shift is studied using a number system coding for these permutations. The system allows to find the rank of a permutation given how it has been generated, and to determine a permutation given its rank. It defines a code describing structural and symmetry properties of the set of permuta- tions ordered according to generation by cyclic shift. The code is associated with an Hamiltonian cycle in a regular weighted digraph. This Hamiltonian cycle is conjec- tured to be of minimal weight, leading to a combinatorial Gray code listing the set of permutations. 1 Introduction It is well known that any natural integer a can be written uniquely in the factorial number system n−1 a = ai i!, ai ∈ {0,...,i}, i=1 X 1 where the uniqueness of the representation comes from the identity n−1 i · i!= n! − 1. (1) i=1 X Charles-Ange Laisant showed in 1888 [2] that the factorial number system codes the permutations generated in lexicographic order. More precisely, when the set of permutations is ordered lexicographically, the rank of a permutation written in the factorial number system provides a code determining the permutation. The code specifies which interchanges of the symbols according to lexicographic order have to be performed to generate the permutation.
    [Show full text]
  • PERMUTATION GROUPS (16W5087)
    PERMUTATION GROUPS (16w5087) Cheryl E. Praeger (University of Western Australia), Katrin Tent (University of Munster),¨ Donna Testerman (Ecole Polytechnique Fed´ erale´ de Lausanne), George Willis (University of Newcastle) November 13 - November 18, 2016 1 Overview of the Field Permutation groups are a mathematical approach to analysing structures by studying the rearrangements of the elements of the structure that preserve it. Finite permutation groups are primarily understood through combinatorial methods, while concepts from logic and topology come to the fore when studying infinite per- mutation groups. These two branches of permutation group theory are not completely independent however because techniques from algebra and geometry may be applied to both, and ideas transfer from one branch to the other. Our workshop brought together researchers on both finite and infinite permutation groups; the participants shared techniques and expertise and explored new avenues of study. The permutation groups act on discrete structures such as graphs or incidence geometries comprising points and lines, and many of the same intuitions apply whether the structure is finite or infinite. Matrix groups are also an important source of both finite and infinite permutation groups, and the constructions used to produce the geometries on which they act in each case are similar. Counting arguments are important when studying finite permutation groups but cannot be used to the same effect with infinite permutation groups. Progress comes instead by using techniques from model theory and descriptive set theory. Another approach to infinite permutation groups is through topology and approx- imation. In this approach, the infinite permutation group is locally the limit of finite permutation groups and results from the finite theory may be brought to bear.
    [Show full text]
  • Binding Groups, Permutation Groups and Modules of Finite Morley Rank Alexandre Borovik, Adrien Deloro
    Binding groups, permutation groups and modules of finite Morley rank Alexandre Borovik, Adrien Deloro To cite this version: Alexandre Borovik, Adrien Deloro. Binding groups, permutation groups and modules of finite Morley rank. 2019. hal-02281140 HAL Id: hal-02281140 https://hal.archives-ouvertes.fr/hal-02281140 Preprint submitted on 9 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BINDING GROUPS, PERMUTATION GROUPS AND MODULES OF FINITE MORLEY RANK ALEXANDRE BOROVIK AND ADRIEN DELORO If one has (or if many people have) spent decades classifying certain objects, one is apt to forget just why one started the project in the first place. Predictions of the death of group theory in 1980 were the pronouncements of just such amne- siacs. [68, p. 4] Contents 1. Introduction and background 2 1.1. The classification programme 2 1.2. Concrete groups of finite Morley rank 3 2. Binding groups and bases 4 2.1. Binding groups 4 2.2. Bases and parametrisation 5 2.3. Sharp bounds for bases 6 3. Permutation groups of finite Morley rank 7 3.1. Highly generically multiply transitive groups 7 3.2.
    [Show full text]
  • Spatial Rules for Capturing Qualitatively Equivalent Configurations in Sketch Maps
    Preprints of the Federated Conference on Computer Science and Information Systems pp. 13–20 Spatial Rules for Capturing Qualitatively Equivalent Configurations in Sketch maps Sahib Jan, Carl Schultz, Angela Schwering and Malumbo Chipofya Institute for Geoinformatics University of Münster, Germany Email: sahib.jan | schultzc | schwering | mchipofya|@uni-muenster.de Abstract—Sketch maps are an externalization of an indi- such as representations for the topological relations [6, 23], vidual’s mental images of an environment. The information orderings [1, 22, 25], directions [10, 24], relative position of represented in sketch maps is schematized, distorted, generalized, points [19, 20, 24] and others. and thus processing spatial information in sketch maps requires plausible representations based on human cognition. Typically In our previous studies [14, 15, 16, 27], we propose a only qualitative relations between spatial objects are preserved set of plausible representations and their coarse versions to in sketch maps, and therefore processing spatial information on qualitatively formalize key sketch aspects. We use several a qualitative level has been suggested. This study extends our qualifiers to extract qualitative constraints from geometric previous work on qualitative representations and alignment of representations of sketch and geo-referenced maps [13] in sketch maps. In this study, we define a set of spatial relations using the declarative spatial reasoning system CLP(QS) as an the form of Qualitative Constraint Networks (QCNs). QCNs approach to formalizing key spatial aspects that are preserved are complete graphs representing spatial objects and relations in sketch maps. Unlike geo-referenced maps, sketch maps do between them. However, in order to derive more cognitively not have a single, global reference frame.
    [Show full text]
  • Higher-Order Intersections in Low-Dimensional Topology
    Higher-order intersections in SPECIAL FEATURE low-dimensional topology Jim Conanta, Rob Schneidermanb, and Peter Teichnerc,d,1 aDepartment of Mathematics, University of Tennessee, Knoxville, TN 37996-1300; bDepartment of Mathematics and Computer Science, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468; cDepartment of Mathematics, University of California, Berkeley, CA 94720-3840; and dMax Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany Edited by Robion C. Kirby, University of California, Berkeley, CA, and approved February 24, 2011 (received for review December 22, 2010) We show how to measure the failure of the Whitney move in dimension 4 by constructing higher-order intersection invariants W of Whitney towers built from iterated Whitney disks on immersed surfaces in 4-manifolds. For Whitney towers on immersed disks in the 4-ball, we identify some of these new invariants with – previously known link invariants such as Milnor, Sato Levine, and Fig. 1. (Left) A canceling pair of transverse intersections between two local Arf invariants. We also define higher-order Sato–Levine and Arf sheets of surfaces in a 3-dimensional slice of 4-space. The horizontal sheet invariants and show that these invariants detect the obstructions appears entirely in the “present,” and the red sheet appears as an arc that to framing a twisted Whitney tower. Together with Milnor invar- is assumed to extend into the “past” and the “future.” (Center) A Whitney iants, these higher-order invariants are shown to classify the exis- disk W pairing the intersections. (Right) A Whitney move guided by W tence of (twisted) Whitney towers of increasing order in the 4-ball.
    [Show full text]
  • 6 Permutation Groups
    Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S) be the collection of all mappings from S into S. In this section, we will emphasize on the collection of all invertible mappings from S into S. The elements of this set will be called permutations because of Theorem 2.4 and the next definition. Definition 6.1 Let S be a nonempty set. A one-to-one mapping from S onto S is called a permutation. Consider the collection of all permutations on S. Then this set is a group with respect to composition. Theorem 6.1 The set of all permutations of a nonempty set S is a group with respect to composition. This group is called the symmetric group on S and will be denoted by Sym(S). Proof. By Theorem 2.4, the set of all permutations on S is just the set I(S) of all invertible mappings from S to S. According to Theorem 4.3, this set is a group with respect to composition. Definition 6.2 A group of permutations , with composition as the operation, is called a permutation group on S. Example 6.1 1. Sym(S) is a permutation group. 2. The collection L of all invertible linear functions from R to R is a permu- tation group with respect to composition.(See Example 4.4.) Note that L is 1 a proper subset of Sym(R) since we can find a function in Sym(R) which is not in L, namely, the function f(x) = x3.
    [Show full text]
  • Classification of 3-Manifolds with Certain Spines*1 )
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 205, 1975 CLASSIFICATIONOF 3-MANIFOLDSWITH CERTAIN SPINES*1 ) BY RICHARD S. STEVENS ABSTRACT. Given the group presentation <p= (a, b\ambn, apbq) With m, n, p, q & 0, we construct the corresponding 2-complex Ky. We prove the following theorems. THEOREM 7. Jf isa spine of a closed orientable 3-manifold if and only if (i) \m\ = \p\ = 1 or \n\ = \q\ = 1, or (") (m, p) = (n, q) = 1. Further, if (ii) holds but (i) does not, then the manifold is unique. THEOREM 10. If M is a closed orientable 3-manifold having K^ as a spine and \ = \mq — np\ then M is a lens space L\ % where (\,fc) = 1 except when X = 0 in which case M = S2 X S1. It is well known that every connected compact orientable 3-manifold with or without boundary has a spine that is a 2-complex with a single vertex. Such 2-complexes correspond very naturally to group presentations, the 1-cells corre- sponding to generators and the 2-cells corresponding to relators. In the case of a closed orientable 3-manifold, there are equally many 1-cells and 2-cells in the spine, i.e., equally many generators and relators in the corresponding presentation. Given a group presentation one is motivated to ask the following questions: (1) Is the corresponding 2-complex a spine of a compact orientable 3-manifold? (2) If there are equally many generators and relators, is the 2-complex a spine of a closed orientable 3-manifold? (3) Can we say what manifold(s) have the 2-complex as a spine? L.
    [Show full text]
  • Algebras Assigned to Ternary Relations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 14 (2013), No 3, pp. 827-844 DOI: 10.18514/MMN.2013.507 Algebras assigned to ternary relations Ivan Chajda, Miroslav Kola°ík, and Helmut Länger Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 14 (2013), No. 3, pp. 827–844 ALGEBRAS ASSIGNED TO TERNARY RELATIONS IVAN CHAJDA, MIROSLAV KOLARˇ IK,´ AND HELMUT LANGER¨ Received 19 March, 2012 Abstract. We show that to every centred ternary relation T on a set A there can be assigned (in a non-unique way) a ternary operation t on A such that the identities satisfied by .A t/ reflect relational properties of T . We classify ternary operations assigned to centred ternaryI relations and we show how the concepts of relational subsystems and homomorphisms are connected with subalgebras and homomorphisms of the assigned algebra .A t/. We show that for ternary relations having a non-void median can be derived so-called median-likeI algebras .A t/ which I become median algebras if the median MT .a;b;c/ is a singleton for all a;b;c A. Finally, we introduce certain algebras assigned to cyclically ordered sets. 2 2010 Mathematics Subject Classification: 08A02; 08A05 Keywords: ternary relation, betweenness, cyclic order, assigned operation, centre, median In [2] and [3], the first and the third author showed that to certain relational systems A .A R/, where A ¿ and R is a binary relation on A, there can be assigned a certainD groupoidI G .A/¤ .A / which captures the properties of R.
    [Show full text]
  • CS E6204 Lecture 5 Automorphisms
    CS E6204 Lecture 5 Automorphisms Abstract An automorphism of a graph is a permutation of its vertex set that preserves incidences of vertices and edges. Under composition, the set of automorphisms of a graph forms what algbraists call a group. In this section, graphs are assumed to be simple. 1. The Automorphism Group 2. Graphs with Given Group 3. Groups of Graph Products 4. Transitivity 5. s-Regularity and s-Transitivity 6. Graphical Regular Representations 7. Primitivity 8. More Automorphisms of Infinite Graphs * This lecture is based on chapter [?] contributed by Mark E. Watkins of Syracuse University to the Handbook of Graph The- ory. 1 1 The Automorphism Group Given a graph X, a permutation α of V (X) is an automor- phism of X if for all u; v 2 V (X) fu; vg 2 E(X) , fα(u); α(v)g 2 E(X) The set of all automorphisms of a graph X, under the operation of composition of functions, forms a subgroup of the symmetric group on V (X) called the automorphism group of X, and it is denoted Aut(X). Figure 1: Example 2.2.3 from GTAIA. Notation The identity of any permutation group is denoted by ι. (JG) Thus, Watkins would write ι instead of λ0 in Figure 1. 2 Rigidity and Orbits A graph is asymmetric if the identity ι is its only automor- phism. Synonym: rigid. Figure 2: The smallest rigid graph. (JG) The orbit of a vertex v in a graph G is the set of all vertices α(v) such that α is an automorphism of G.
    [Show full text]
  • Quasi P Or Not Quasi P? That Is the Question
    Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups.
    [Show full text]
  • Lecture 9: Permutation Groups
    Lecture 9: Permutation Groups Prof. Dr. Ali Bülent EKIN· Doç. Dr. Elif TAN Ankara University Ali Bülent Ekin, Elif Tan (Ankara University) Permutation Groups 1 / 14 Permutation Groups Definition A permutation of a nonempty set A is a function s : A A that is one-to-one and onto. In other words, a pemutation of a set! is a rearrangement of the elements of the set. Theorem Let A be a nonempty set and let SA be the collection of all permutations of A. Then (SA, ) is a group, where is the function composition operation. The identity element of (SA, ) is the identity permutation i : A A, i (a) = a. ! 1 The inverse element of s is the permutation s such that 1 1 ss (a) = s s (a) = i (a) . Ali Bülent Ekin, Elif Tan (Ankara University) Permutation Groups 2 / 14 Permutation Groups Definition The group (SA, ) is called a permutation group on A. We will focus on permutation groups on finite sets. Definition Let In = 1, 2, ... , n , n 1 and let Sn be the set of all permutations on f g ≥ In.The group (Sn, ) is called the symmetric group on In. Let s be a permutation on In. It is convenient to use the following two-row notation: 1 2 n s = ··· s (1) s (2) s (n) ··· Ali Bülent Ekin, Elif Tan (Ankara University) Permutation Groups 3 / 14 Symmetric Groups 1 2 3 4 1 2 3 4 Example: Let f = and g = . Then 1 3 4 2 4 3 2 1 1 2 3 4 1 2 3 4 1 2 3 4 f g = = 1 3 4 2 4 3 2 1 2 4 3 1 1 2 3 4 1 2 3 4 1 2 3 4 g f = = 4 3 2 1 1 3 4 2 4 2 1 3 which shows that f g = g f .
    [Show full text]
  • Arxiv:1711.04390V1 [Math.LO]
    A FAMILY OF DP-MINIMAL EXPANSIONS OF Z; ( +) MINH CHIEU TRAN, ERIK WALSBERG Abstract. We show that the cyclically ordered-abelian groups expanding (Z; +) contain a continuum-size family of dp-minimal structures such that no two members define the same subsets of Z. 1. Introduction In this paper, we are concerned with the following classification-type question: What are the dp-minimal expansions of Z; ? ( +) For a definition of dp-minimality, see [Sim15, Chapter 4]. The terms expansion and reduct here are as used in the sense of definability: If M1 and M2 are structures with underlying set M and every M1-definable set is also definable in M2, we say that M1 is a reduct of M2 and that M2 is an expansion of M1. Two structures are definably equivalent if each is a reduct of the other. A very remarkable common feature of the known dp-minimal expansions of Z; ( +) is their “rigidity”. In [CP16], it is shown that all proper stable expansions of Z; ( +) have infinite weight, hence infinite dp-rank, and so in particular are not dp-minimal. The expansion Z; , , well-known to be dp-minimal, does not have any proper ( + <) dp-minimal expansion [ADH+16, 6.6], or any proper expansion of finite dp-rank, or even any proper strong expansion [DG17, 2.20]. Moreover, any reduct Z; , ( + <) expanding Z; is definably equivalent to Z; or Z; , [Con16]. Recently, it ( +) ( +) ( + <) is shown in [Ad17, 1.2] that Z; , is dp-minimal for all primes p where be ( + ≺p) ≺p the partial order on Z given by declaring k l if and only if v k v l with ≺p p( ) < p( ) v the p-adic valuation on Z.
    [Show full text]