Elements and Opposition Dates of Neas M

Total Page:16

File Type:pdf, Size:1020Kb

Elements and Opposition Dates of Neas M ELEMENTS AND OPPOSITION DATES OF NEAS ecliptic and equinox 2000.0, epoch 2020 may 31.0 tt Planet H G M ω Ω i e µ a q Q T Oppos. V m ◦ ◦ ◦ ◦ ◦ 433 Eros 11.16 0.46 271.07172 178.88229 304.29934 10.83056 0.2229512 0.55981864 1.458 1.133 1.783 Am — — 719 Albert 15.5 X 140.27342 156.17624 183.86704 11.56750 0.5465584 0.22995519 2.639 1.196 4.081 Am 2 2.5 20.8 887 Alinda 13.4 −0.12 294.57916 350.49548 110.43433 9.39385 0.5703318 0.25332252 2.474 1.063 3.885 Am 9 25.9 15.6 1036 Ganymed 9.45 0.30 4.81774 132.36464 215.54683 26.67765 0.5330461 0.22658209 2.665 1.244 4.085 Am 12 31.9 13.2 1221 Amor 17.7 X 38.52241 26.69485 171.32694 11.87655 0.4352849 0.37061460 1.919 1.084 2.755 Am 8 1.1 19.4 1566 Icarus 16.9 X 192.08315 31.39332 87.99755 22.82208 0.8270215 0.88038746 1.078 0.187 1.970 Ap 8 7.6 18.8 1580 Betulia 14.7 X 195.07244 159.51799 62.29781 52.09209 0.4873502 0.30263176 2.197 1.126 3.268 Am 11 28.9 18.8 1620 Geographos 15.60 X 235.11265 276.95607 337.18697 13.33706 0.3354548 0.70892649 1.246 0.828 1.664 Ap — — 1627 Ivar 13.2 0.60 256.50690 167.79352 133.11929 8.45187 0.3967831 0.38751575 1.863 1.124 2.603 Am 2 5.9 16.3 1685 Toro 14.23 X 290.25065 127.20659 274.24524 9.38313 0.4358371 0.61627121 1.368 0.772 1.964 Ap — — 1862 Apollo 16.25 0.09 88.54647 285.97594 35.62715 6.35476 0.5599167 0.55280887 1.470 0.647 2.294 Ap — — 1863 Antinous 15.54 X 69.81355 268.06698 346.44035 18.40048 0.6065073 0.29040190 2.258 0.889 3.628 Ap 11 9.9 20.6 1864 Daedalus 14.85 X 221.23165 325.63331 6.62201 22.21197 0.6144701 0.55816940 1.461 0.563 2.359 Ap 2 25.6 18.1 1865 Cerberus 16.84 X 3.32033 325.24550 212.92019 16.09596 0.4668531 0.87815686 1.080 0.576 1.584 Ap — — 1866 Sisyphus 12.4 X 104.18468 293.06299 63.49080 41.19932 0.5380834 0.37821398 1.894 0.875 2.913 Ap 1 6.2 14.6 1915 Quetz´alcoatl 18.97 0.10 255.59363 347.83238 162.93676 20.40459 0.5705653 0.24298418 2.543 1.092 3.995 Am 10 11.4 23.2 1916 Boreas 14.93 X 179.69823 335.86710 340.59900 12.88011 0.4496412 0.28759419 2.273 1.251 3.295 Am 1 23.9 19.5 1917 Cuyo 13.9 X 254.62269 194.50598 188.30701 23.95918 0.5055076 0.31284280 2.149 1.063 3.235 Am 5 13.6 18.2 1943 Anteros 15.75 X 188.23678 338.37391 246.32982 8.70621 0.2559952 0.57608889 1.430 1.064 1.797 Am — — 1980 Tezcatlipoca 13.92 X 49.59814 115.44497 246.57336 26.86723 0.3645634 0.44093109 1.710 1.086 2.333 Am — — 1981 Midas 15.2 X 312.73612 267.82298 356.86402 39.82960 0.6503516 0.41625085 1.777 0.621 2.932 Ap 1 27.4 19.5 2059 Baboquivari 15.8 X 44.33041 192.43255 200.69437 11.01363 0.5309194 0.22923215 2.644 1.240 4.048 Am — — 2061 Anza 16.56 X 180.54864 157.02502 207.37960 3.79904 0.5357481 0.28926400 2.264 1.051 3.477 Am 3 16.3 21.4 2062 Aten 16.80 X 119.47061 147.99329 108.55272 18.93385 0.1827552 1.03691125 0.967 0.790 1.143 At — — 2063 Bacchus 17.3 X 273.73445 55.36123 33.08310 9.43112 0.3495079 0.88047298 1.078 0.701 1.455 Ap — — 2100 Ra–Shalom 16.05 0.12 171.76209 356.05114 170.80373 15.75299 0.4365427 1.29861916 0.832 0.469 1.195 At — — 2101 Adonis 18.8 X 336.15728 43.60729 349.48720 1.32248 0.7639972 0.38393465 1.875 0.442 3.307 Ap — — 2102 Tantalus 16.0 X 81.98649 61.54105 94.36248 64.00700 0.2991482 0.67257911 1.290 0.904 1.676 Ap 7 4.5 16.5 2135 Aristaeus 17.94 X 142.92700 290.90937 191.18028 23.05816 0.5030139 0.48700954 1.600 0.795 2.405 Ap 7 15.9 21.6 2201 Oljato 15.25 X 203.11574 98.24755 74.98671 2.52239 0.7128855 0.30746070 2.174 0.624 3.724 Ap 10 2.9 20.1 2202 Pele 17.1 X 261.15849 217.90797 169.95707 8.74226 0.5126980 0.28436693 2.290 1.116 3.464 Am 5 23.1 21.3 2212 Hephaistos 13.87 X 48.90011 209.39509 27.53011 11.55179 0.8376667 0.31064624 2.159 0.351 3.968 Ap 11 3.1 18.7 2329 Orthos 14.5 X 264.35723 146.03995 169.27587 24.47086 0.6540343 0.26355917 2.409 0.834 3.985 Ap 2 20.4 20.0 2340 Hathor 20.2 X 178.83911 40.05572 211.35273 5.85850 0.4498900 1.27147611 0.844 0.464 1.223 At — — 2368 Beltrovata 15.21 X 2.43485 43.00882 287.33776 5.22360 0.4133577 0.32269217 2.105 1.235 2.975 Am 12 17.2 17.3 2608 Seneca 17.52 X 240.12933 37.38313 167.34692 14.67269 0.5709674 0.24692490 2.516 1.080 3.953 Am 12 1.8 21.9 3102 Krok 16.1 X 101.88775 154.74208 172.06396 8.44164 0.4493180 0.31238968 2.151 1.185 3.118 Am — — 3103 Eger 15.38 X 76.28542 254.08189 129.75246 20.93091 0.3541492 0.59230424 1.404 0.907 1.902 Ap — — 3122 Florence 14.1 X 50.43780 27.84783 336.06383 22.14251 0.4229446 0.41891080 1.769 1.021 2.517 Am — — 3199 Nefertiti 14.84 X 0.78734 53.42206 339.99128 32.96252 0.2839878 0.49888215 1.574 1.127 2.022 Am — — 3200 Phaethon 14.6 X 228.95726 322.18672 265.21767 22.25956 0.8898312 0.68753881 1.271 0.140 2.403 Ap — — 3271 Ul 16.4 X 146.90590 159.07777 158.81613 25.07052 0.3958678 0.32347541 2.102 1.270 2.934 Am — — 3288 Seleucus 15.2 X 57.08651 349.34075 218.63983 5.92993 0.4561160 0.33997015 2.033 1.106 2.961 Am 9 5.2 18.3 3352 McAuliffe 15.8 X 95.83155 15.91556 107.36217 4.77335 0.3691145 0.38261304 1.879 1.186 2.573 Am 6 10.1 18.1 3360 Syrinx 15.9 X 2.58985 63.46117 242.55361 21.16212 0.7461017 0.25460231 2.465 0.626 4.305 Ap 12 18.8 19.6 3361 Orpheus 19.03 X 280.26360 301.90563 189.16718 2.67770 0.3230753 0.74028330 1.210 0.819 1.601 Ap — — 3362 Khufu 18.3 X 197.82823 55.05397 152.43368 9.91690 0.4684784 1.00130072 0.990 0.526 1.453 At — — 3551 Verenia 16.75 X 42.20469 193.25395 173.78654 9.50712 0.4868494 0.32551403 2.093 1.074 3.112 Am — — 3552 Don Quixote 12.9 X 84.53233 316.49792 349.96480 31.08441 0.7089407 0.11207143 4.261 1.240 7.281 Am — — 3553 Mera 16.4 X 261.93560 288.87319 232.52780 36.77058 0.3201563 0.46735405 1.645 1.118 2.171 Am — — 3554 Amun 15.82 X 26.03690 359.40091 358.61033 23.35696 0.2805767 1.02542075 0.974 0.701 1.247 At — — 3671 Dionysus 16.4 X 7.99451 204.26304 82.08578 13.53412 0.5416799 0.30233422 2.199 1.008 3.390 Ap 11 13.6 18.9 3691 Bede 14.7 X 37.97431 234.97026 348.74681 20.35826 0.2841953 0.41695706 1.774 1.270 2.279 Am 8 27.9 16.0 3752 Camillo 15.3 X 150.45572 312.21755 147.96692 55.55755 0.3016719 0.58644997 1.414 0.987 1.840 Ap 7 8.3 18.6 3753 Cruithne 15.6 X 166.47019 43.83754 126.22512 19.80627 0.5148439 0.98902227 0.998 0.484 1.511 At — — 3757 Anagolay 18.95 X 19.07702 17.22973 74.96084 3.86781 0.4463036 0.39671162 1.834 1.016 2.653 Ap — — 3838 Epona 15.6 X 91.61070 49.69520 235.50321 29.20777 0.7025009 0.53385189 1.505 0.448 2.562 Ap — — 3908 Nyx 17.3 X 296.55891 126.56230 261.25078 2.18557 0.4589935 0.36820232 1.928 1.043 2.813 Am 7 5.6 18.2 3988 Huma 17.8 X 214.77200 86.89902 229.81319 10.76739 0.3166590 0.51349277 1.544 1.055 2.034 Am 1 15.9 20.0 4015 Wilson–Harrington 15.99 X 171.01773 95.36995 266.81788 2.79830 0.6311869 0.23162384 2.626 0.968 4.283 Ap 3 13.4 21.8 4034 Vishnu 18.4 X 254.55919 296.66575 157.93001 11.17030 0.4441282 0.90339736 1.060 0.589 1.530 Ap — — 4055 Magellan 14.7 X 345.20351 154.36624 164.82978 23.25374 0.3263363 0.40127439 1.820 1.226 2.415 Am 11 13.9 16.3 4179 Toutatis 15.30 0.10 311.28336 277.99017 125.19915 0.44795 0.6242486 0.24270042 2.545 0.956 4.134 Ap 7 11.6 17.2 4183 Cuno 14.4 X 331.35053 236.34912 294.86739 6.70408 0.6341388 0.35293627 1.983 0.726 3.241 Ap — — 4197 Morpheus 14.6 X 263.27022 122.51109 7.04465 12.59411 0.7724194 0.28346185 2.295 0.522 4.068 Ap 9 2.6 18.8 4257 Ubasti 15.9 X 134.95991 278.93317 169.18668 40.71246 0.4683923 0.46626133 1.647 0.876 2.419 Ap 6 3.4 19.9 4341 Poseidon 15.9 X 129.59944 15.67939 108.10026 11.85379 0.6795655 0.39619277 1.836 0.588 3.084 Ap 7 18.1 20.1 4401 Aditi 16.0 X 113.41923 68.15068 22.88807 26.63803 0.5644002 0.23774016 2.581 1.124 4.037 Am 5 19.2∗ 21.4 4450 Pan 17.1 X 1.70917 291.83634 311.80680 5.52056 0.5866724 0.56889561 1.442 0.596 2.289 Ap 1 1.6 18.7 4486 Mithra 15.6 X 33.94873 168.90717 82.23561 3.03969 0.6630233 0.30218861 2.199 0.741 3.657 Ap 11 2.3 19.4 4487 Pocahontas 17.3 X 123.07059 173.96666 198.11761 16.40455 0.2964622 0.43299566 1.730 1.217 2.243 Am 1 4.5 18.7 4503 Cleobulus 15.6 X 292.99909 76.31519 45.95838 2.51292 0.5240915 0.22160380 2.704 1.287 4.122 Am 10 22.4 17.6 4544 Xanthus 17.1 X 311.75197 333.83948 23.98483 14.14494 0.2501657 0.92648958 1.042 0.781 1.303 Ap — — 4581 Asclepius 20.7 X 127.27591 255.34125 180.21840 4.91733 0.3570526 0.95306354 1.023 0.658 1.388 Ap — — 4596 1981 QB 16.3 X 179.64335 248.40244 154.23011 37.07691 0.5199543 0.29424017 2.239 1.075 3.403 Am 5 6.4 21.8 4660 Nereus 18.2 X 41.94651 158.07022 314.40560 1.43211 0.3603360 0.54259331 1.489 0.952 2.025 Ap — — 4688 1980 WF 19.4 X 292.48211 213.83925 241.24102 6.37320 0.5174139 0.29544293 2.233 1.077 3.388 Am 9 28.6 20.0 4769 Castalia 16.9 X 325.56633 121.40981 325.54130 8.88552 0.4832323 0.89911153 1.063 0.549 1.577 Ap — — 4947 Ninkasi 18.0 X 241.23234 192.90989 215.44653 15.65100 0.1683453 0.61458249 1.370 1.139 1.601 Am 7 20.9 18.7 4953 1990 MU 14.1 X 241.21122 77.75348 77.70393 24.39060 0.6576261 0.47755831 1.621 0.555 2.687 Ap 11 1.4 15.4 ∗ The additional opposition: 10 16.5, V = 18.3 – 7650 – ELEMENTS AND OPPOSITION DATES OF NEAS ecliptic and equinox 2000.0, epoch 2020 may 31.0 tt Planet H G M ω Ω i e µ a q Q T Oppos.
Recommended publications
  • BENNU from OSIRIS-Rex APPROACH and PRELIMINARY SURVEY OBSERVATIONS
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1956.pdf VNIR AND TIR SPECTRAL CHARACTERISTICS OF (101955) BENNU FROM OSIRIS-REx APPROACH AND PRELIMINARY SURVEY OBSERVATIONS. V. E. Hamilton1, A. A. Simon2, P. R. Christensen3, D. C. Reuter2, D. N. Della Giustina4, J. P. Emery5, R. D. Hanna6, E. Howell4, H. H. Kaplan1, B. E. Clark7, B. Rizk4, D. S. Lauretta4, and the OSIRIS-REx Team, 1Southwest Research Institute, 1050 Walnut St. #300, Boulder, CO 80302 ([email protected]), 2NASA Goddard Space Flight Center, Greenbelt, MD, 3School of Earth & Space Ex- ploration, Arizona State University, Tempe, AZ 85287, 4Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, 5Dept. Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996, 6University of Texas, Austin, TX, 78712, 7Dept. Physics & Astronomy, Ithaca College, Ithaca, NY 14850. Introduction: Visible to near infrared (VNIR) and generation and application of a photometric model, thermal infrared (TIR) spectrometers onboard the Ori- production of bolometric Bond albedo, reflectance gins, Spectral Interpretation, Resource Identification, factor spectra, and the calculation of spectral indices. Security–Regolith Explorer (OSIRIS-REx) spacecraft For OTES, this includes deriving emissivity spectra have revealed evidence of hydrated phases across the and temperature information with emissivity being an surface of asteroid (101955) Bennu. Here we describe input into a linear least squares mixing model and a spectral features identified
    [Show full text]
  • Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
    Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes.
    [Show full text]
  • Observation of Near-Earth Object (1566) Icarus and the Split Candidate 2007 MK6
    PPS07-P07 JpGU-AGU Joint Meeting 2017 Observation of near-earth object (1566) Icarus and the split candidate 2007 MK6 *Seitaro Urakawa1, Katsutoshi Ohtsuka2, Shinsuke Abe3, Daisuke Kinoshita4, Hidekazu Hanayama 5, Takeshi Miyaji5, Shin-ichiro Okumura1, Kazuya Ayani6, Syouta Maeno6, Daisuke Kuroda5, Akihiko Fukui5, Norio Narita5,7,8, George HASHIMOTO9, Yuri SAKURAI9, Sayuri Nakamura9, Jun Takahashi10, Tomoyasu Tanigawa11, Otabek Burhonov12, Kamoliddin Ergashev12, Takashi Ito5, Fumi Yoshida5, Makoto Watanabe13, Masataka Imai14, Kiyoshi Kuramoto14, Tomohiko Sekiguchi15 , MASATERU ISHIGURO16 1. Japan Spaceguard Association, 2. Tokyo Meteor Network, 3. Nihon University, 4. National Central University, 5. National Astronomical Observatory of Japan, 6. Bisei Observatory, 7. Astrobiology Center, 8. University of Tokyo, 9. Okayama University, 10. University of Hyogo, 11. Sanda Shounkan Highschool, 12. Ulugh Beg Astronomical Institute Uzbekistan Academy of Science , 13. Okayama University of Science, 14. Hokkaido University, 15. Hokkaido University of Education, 16. Seoul National University Background & Aim: A numerical simulation proposes that the origin of near-Earth object 2007 MK6 (hereafter, MK6) is a near-Earth object (1566) Icarus (hereafter, Icarus) [1]. In addition to it, the orbital parameters of the daytime Taurid-Perseid meteor swarm are in good agreement with those of Icarus. Thus, it is considered that MK6 is split from the parent object Icarus by a rotational fission and/or an impact event, and the produced dust became to the daytime Taurid-Perseid meteor swarm. To confirm such a hypothesis, we need to obtain the observational evidence that the color indices of Icarus and MK6 are same. Moreover, if MK6 split by the rotational fission due to the YORP effect, the rotation period of Icarus would be shorten compared with the past rotation period.
    [Show full text]
  • Bennu: Implications for Aqueous Alteration History
    RESEARCH ARTICLES Cite as: H. H. Kaplan et al., Science 10.1126/science.abc3557 (2020). Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history H. H. Kaplan1,2*, D. S. Lauretta3, A. A. Simon1, V. E. Hamilton2, D. N. DellaGiustina3, D. R. Golish3, D. C. Reuter1, C. A. Bennett3, K. N. Burke3, H. Campins4, H. C. Connolly Jr. 5,3, J. P. Dworkin1, J. P. Emery6, D. P. Glavin1, T. D. Glotch7, R. Hanna8, K. Ishimaru3, E. R. Jawin9, T. J. McCoy9, N. Porter3, S. A. Sandford10, S. Ferrone11, B. E. Clark11, J.-Y. Li12, X.-D. Zou12, M. G. Daly13, O. S. Barnouin14, J. A. Seabrook13, H. L. Enos3 1NASA Goddard Space Flight Center, Greenbelt, MD, USA. 2Southwest Research Institute, Boulder, CO, USA. 3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. 4Department of Physics, University of Central Florida, Orlando, FL, USA. 5Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA. 6Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA. 7Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. 8Jackson School of Geosciences, University of Texas, Austin, TX, USA. 9Smithsonian Institution National Museum of Natural History, Washington, DC, USA. 10NASA Ames Research Center, Mountain View, CA, USA. 11Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA. 12Planetary Science Institute, Tucson, AZ, Downloaded from USA. 13Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada. 14John Hopkins University Applied Physics Laboratory, Laurel, MD, USA. *Corresponding author. E-mail: Email: [email protected] The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System.
    [Show full text]
  • (101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
    ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo.
    [Show full text]
  • An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
    Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1].
    [Show full text]
  • Jjmonl 1603.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 3 March 2016 GRAIL - On the Trail of the Moon's Missing Mass GRAIL (Gravity Recovery and Interior Laboratory) was a NASA scientific mission in 2011/12 to map the surface of the moon and collect data on gravitational anomalies. The image here is an artist's impres- sion of the twin satellites (Ebb and Flow) orbiting in tandem above a gravitational image of the moon. See inside, page 4 for information on gravitational anomalies (mascons) or visit http://solarsystem. nasa.gov/grail. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 SUNRISE AND SUNSET ...................................................... 13 MARE HUMBOLDTIANIUM AND THE NORTHEAST LIMB ......... 5 JUPITER AND ITS MOONS ................................................. 13 ONE YEAR IN SPACE ....................................................... 6 TRANSIT OF JUPITER'S RED SPOT ....................................
    [Show full text]
  • Alexandre Amorim -.:: GEOCITIES.Ws
    Alexandre Amorim (org) 2 3 PREFÁCIO O Boletim Observe! é uma iniciativa da Coordenação de Observação Astronômica do Núcleo de Estudo e Observação Astronômica “José Brazilício de Souza” (NEOA-JBS). Durante a reunião administrativa do NEOA-JBS em maio de 2010 foi apresentada a edição de Junho de 2010 para apreciação dos demais coordenadores do Núcleo onde houve aprovação unânime em usar o Boletim Observe! como veículo de informação das atividades e, principalmente, observações astronômicas. O Boletim Observe! é publicado mensalmente em formato eletrônico ou impresso separadamente, prezando pela simplicidade das informações e encorajando os leitores a observar, registrar e publicar os eventos astronômicos. Desde a sua primeira edição o Boletim Observe! conta com a colaboração espontânea de diversos astrônomos amadores e profissionais. Toda edição do Observe! do mês de dezembro é publicado um índice dos artigos do respectivo ano. Porém, desde aquela edição de Junho de 2010 foram publicados centenas de artigos e faz-se necessário consultar assuntos que foram tratados nas edições anteriores do Observe! e seus respectivos autores. Para isso publicaremos anualmente esse Índice de Assuntos, permitindo a consulta rápida dos temas abordados. Florianópolis, 1º de dezembro de 2018 Alexandre Amorim Coordenação de Observação Astronômica do NEOA-JBS 4 Ano I (2010) Nº 1 – Junho 2010 Eclipse da Lua em 26 de junho de 2010 Amorim, A. Júpiter sem a Banda Equatorial Sul Amorim, A. Conjunção entre Júpiter e Urano Amorim, A. Causos do Avelino Alves, A. A. Quem foi Eugênia de Bessa? Amorim, A. Nº 2 – Julho 2010 Aprendendo a dimensionar as distâncias angulares no céu Neves, M.
    [Show full text]
  • Asteroid 1566 Icarus's Size, Shape, Orbit, and Yarkovsky Drift from Radar
    Draft version January 16, 2017 Preprint typeset using LATEX style emulateapj v. 5/2/11 ASTEROID 1566 ICARUS'S SIZE, SHAPE, ORBIT, AND YARKOVSKY DRIFT FROM RADAR OBSERVATIONS Adam H. Greenberg University of California, Los Angeles, CA Jean-Luc Margot University of California, Los Angeles, CA Ashok K. Verma University of California, Los Angeles, CA Patrick A. Taylor Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA Shantanu P. Naidu Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA Marina. Brozovic Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA Lance A. M. Benner Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA Draft version January 16, 2017 ABSTRACT Near-Earth asteroid (NEA) 1566 Icarus (a = 1:08 au, e = 0:83, i = 22:8◦) made a close approach to Earth in June 2015 at 22 lunar distances (LD). Its detection during the 1968 approach (16 LD) was the first in the history of asteroid radar astronomy. A subsequent approach in 1996 (40 LD) did not yield radar images. We describe analyses of our 2015 radar observations of Icarus obtained at the Arecibo Observatory and the DSS-14 antenna at Goldstone. These data show that the asteroid is a moderately flattened spheroid with an equivalent diameter of 1.44 km with 18% uncertainties, resolving long-standing questions about the asteroid size. We also solve for Icarus' spin axis orientation (λ = 270◦ ± 10◦; β = −81◦ ± 10◦), which is not consistent with the estimates based on the 1968 lightcurve observations. Icarus has a strongly specular scattering behavior, among the highest ever measured in asteroid radar observations, and a radar albedo of ∼2%, among the lowest ever measured in asteroid radar observations.
    [Show full text]
  • Arecibo Radar Observations of 14 High-Priority Near-Earth Asteroids in CY2020 and January 2021 Patrick A
    Arecibo Radar Observations of 14 High-Priority Near-Earth Asteroids in CY2020 and January 2021 Patrick A. Taylor (LPI, USRA), Anne K. Virkki, Flaviane C.F. Venditti, Sean E. Marshall, Dylan C. Hickson, Luisa F. Zambrano-Marin (Arecibo Observatory, UCF), Edgard G. Rivera-Valent´ın, Sriram S. Bhiravarasu, Betzaida Aponte-Hernandez (LPI, USRA), Michael C. Nolan, Ellen S. Howell (U. Arizona), Tracy M. Becker (SwRI), Jon D. Giorgini, Lance A. M. Benner, Marina Brozovic, Shantanu P. Naidu (JPL), Michael W. Busch (SETI), Jean-Luc Margot, Sanjana Prabhu Desai (UCLA), Agata Rozek˙ (U. Kent), Mary L. Hinkle (UCF), Michael K. Shepard (Bloomsburg U.), and Christopher Magri (U. Maine) Summary We propose the continuation of the long-running project R3037 to physically and dynamically characterize the population of near-Earth asteroids with the Arecibo S-band (2380 MHz; 12.6 cm) planetary radar system. The objectives of project R3037 are to: (1) collect high-resolution radar images of and (2) report ultra-precise radar astrometry for the strongest predicted radar targets for the 2020 calendar year plus early January 2021. Such images will be used for three-dimensional shape modeling as the data sets allow. These observations will be carried out as part of the NASA- funded Arecibo planetary radar program, Grant No. 80NSSC19K0523, to PI Anne Virkki (Arecibo Observatory, University of Central Florida) with Patrick Taylor as Institutional PI at the Lunar and Planetary Institute (Universities Space Research Association). Background Radar is arguably the most powerful Earth-based technique for post-discovery physical and dynamical characterization of near-Earth asteroids (NEAs) and plays a crucial role in the nation’s planetary defense initiatives led through the NASA Planetary Defense Coordination Office.
    [Show full text]
  • The University of Chicago Glimpses of Far Away
    THE UNIVERSITY OF CHICAGO GLIMPSES OF FAR AWAY PLACES: INTENSIVE ATMOSPHERE CHARACTERIZATION OF EXTRASOLAR PLANETS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ASTRONOMY AND ASTROPHYSICS BY LAURA KREIDBERG CHICAGO, ILLINOIS AUGUST 2016 Copyright c 2016 by Laura Kreidberg All Rights Reserved Far away places with strange sounding names Far away over the sea Those far away places with strange sounding names Are calling, calling me. { Joan Whitney & Alex Kramer TABLE OF CONTENTS LIST OF FIGURES . vii LIST OF TABLES . ix ACKNOWLEDGMENTS . x ABSTRACT . xi 1 INTRODUCTION . 1 1.1 Exoplanets' Greatest Hits, 1995 - present . 1 1.2 Moving from Discovery to Characterization . 2 1.2.1 Clues from Planetary Atmospheres I: How Do Planets Form? . 2 1.2.2 Clues from Planetary Atmospheres II: What are Planets Like? . 3 1.2.3 Goals for This Work . 4 1.3 Overview of Atmosphere Characterization Techniques . 4 1.3.1 Transmission Spectroscopy . 5 1.3.2 Emission Spectroscopy . 5 1.4 Technical Breakthroughs Enabling Atmospheric Studies . 7 1.5 Chapter Summaries . 10 2 CLOUDS IN THE ATMOSPHERE OF THE SUPER-EARTH EXOPLANET GJ 1214b . 12 2.1 Introduction . 12 2.2 Observations and Data Reduction . 13 2.3 Implications for the Atmosphere . 14 2.4 Conclusions . 18 3 A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b . 21 3.1 Introduction . 21 3.2 Observations and Data Reduction . 23 3.3 Analysis . 24 3.4 Results . 27 3.4.1 Constraints from the Emission Spectrum .
    [Show full text]
  • Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
    Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments.
    [Show full text]