<<

733

Index

a ALPO-18 catalyst 188, 280 ab initio calculations 377, 411, 412 aluminophosphate MeAPO-36 382 aberration-corrected electron microscopy aluminosilicates 382 (AC-TEM) 345, 346, 349 ammonia -catalysed dehydration 8 – absorption tower 585 –fructose 9,10 – adsorbed nitrogen 575, 576 acid-catalysed esterification 17 – Badische Anilin und Soda Fabrik (BASF) acrolein 690, 692 laboratories 569 acrylic acid 690 – BASF catalyst S6-10 570, 574 acrylonitrile 688–690 –CO2 removal 585 , chemisorption 101–104 – and copper catalyst 585 acyclic diene metathesis (ADMET) 413 – crystalline α-Fe phase 574 adiabatic reactors 516–518 – ex situ X-ray diffraction studies 574 adipic acid 697, 698, 700 – Fe catalysts 570 adsorbate 67 – high-temperature treatment 573 adsorption – in situ X-ray powder diffractometric studies – clean solids 71–74 574 –definition 67 – methanation 585 – energetics 113–126 – methane 585 – heterogeneous reactions 132–140, –N2 fixation 568 142–147, 151 – natural 583 – isotherms and isobars 79–88, 90–101 – nitrogen-containing compounds 568 – isotherms, kinetic principles 105–113 – oxidation 588–592 – microkinetics 147, 148, 152–154 – potassium 582 – mobility 126, 127 – potential-energy diagram 580 – ordered adlayers 74–76, 79 – primary reforming furnace 583 – physical, chemisorptions and precursor – process streams 585 states 67–70 – production 569 – surface reactions 127–129, 131, 132 – promoted iron catalyst composition 573 AES analysis see Auger electron spectroscopic – promoters 570 (AES) analysis 573 – reactor configurations 585–588 affinity coefficient 111 – reforming reactions 583 agostic interactions 49, 51 – Ru-based catalysts 570 Al2O3/CeO2/noble metal 385 – shift converters 583 algae biofuel challenge 13 – steam-reforming reactions 583 Algenol 13 – surface 578–580 alkaline-earth 430 – surface nitride 576–578 ALPO structure 384 – synthesis reactor 649

Principles and Practice of Heterogeneous , Second Edition. Sir John M. Thomas and W. J. Thomas. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 734 Index

ammonia (continued) Born model 379 – Temkin–Pyzhev description 571–573 Brønsted catalysts 42, 43 – typical arrangement, plant 584 Brønsted-acid catalysed isomerization 720 – world population 569, 570 Brønsted–Evans–Polanyi (BEP) plot 562 – X-ray photoelectron spectrum 573 Brønsted–Evans–Polanyi (BEP) relation 52, ammonia oxidation 527 101–103, 415 ammonia synthesis reactor 520 bridging hydroxyl groups 383 ammoxidation process 22 BRIMTM 232, 237 ammoxidation 22, 176, 589, 687 Brunauer classification 80 argon adsorption isotherm 703 Brunauer–Emmett–Teller (BET) isotherm aromatic alkylation 708 82, 110 artificial leaf 661, 662 Brunauer–Emmett–Teller (BET) method artificial photosynthesis systems 661 – energetic heterogeneity 297 atomic and ionic polarization 379 – fractal analysis 297 atomic force microscopy (AFM) 229, 230, – nitrogen 297 239, 240 – principle 297 atomistic studies 385, 389 – surface area 297 attenuated total reflection (ATR) IR – transformations 297 spectroscopy 189 butene binding , ZSM-5 387 Auger electron spectroscopy (AES) 40, 177, 190, 573, 575, 576 c auto-exhaust catalysts 23, 24, 46 catalytic reactors, coupling and decoupling auto-thermal reactors (ATR) 493 489 autocatalysis 133, 134, 144 C-hexene 423, 425, 426 autothermal syngas production 492 Caltech–Swiss solar reactor 726 AVADA (advanced acetates by direct addition) Cambridge–Tubingen–London̈ (CTL) team 364 368 Atzel cell 626 capillary-microreactor 487 caprolactam 646, 697, 698 b carbenium 637, 642 Balandin volcano plot 35 carbohydrates starch and cellulose derived 7 band bending 403–406, 408 carbon nanotubes (CNT) 664, 683 batch reactors 499, 500, 501, 510–512 cascade catalytic reactions 700, 701 Belousov–Zhabotinskii (BZ) reaction 133 catalysed hydrolysis of starch 16 benzene-free synthesis, catechol 7, 8 catalyst characterization methods 174, 175 BEP plot, see Brønsted–Evans–Polanyi (BEP) catalyst deactivation plot 562 – models 455–457, 459–462 BET see Brunauer–Emmett–Teller 296 – processes 452–454 bifunctional catalysts 42, 449–451 catalyst packing 515 bimetallic catalysts 721–723 catalyst poisoning 37, 459, 460, 462 bimetallic cluster catalysts 206–209 catalysts design 719 bimetallic nanoparticles 53 catalytic cracking 18, 19, 42 bioinspired photosystems 659 – cycloparaffins 635 biomass 657 – FCC catalyst 638–640 biomass-derived carbon feedstocks 695 – fluid catalytic cracking (FCC) 634 biomass-derived polyols 8 – heavy gas oil or vacuum gas oil (HVGO) biorefineries 655 634 bismuth molybdates 688, 689, 722 – high-activity robust catalysts 634 bismuth molybdate catalysts 47, 688, 689, – petroleum refineries 635 722 – Shell middle distillate synthesis (SMDS) blue-coloured light 659 636 body-centred cubic (bcc) metals – ‘syn-gas’ 636 high-symmetry planes, 71, 72 catalytic cycle 148 Boltzmann statistics 86, 380, 401 catalytic 17, 507 Index 735 catalytic hydrothermal reactor (Cat-HTR) computer modelling techniques 377 706 concentration instabilities 139, 140 catalytic monolith continuous reactors 510, 513 – applications 605 continuous stirred-tank reactor (CSTR) 504, – automobile exhaust applications 609 505 – catalytic and homogeneous oxidation 611 conventional gas–liquid adsorbers 485 – catalytic chamber 604 conventional transportation 707 – chemical and physical effects 610, 611 Core-Shell Co-Catalysts 669 – CO formation 607 countercurrent flow 526 – combustion processes 606 cross-polarization (CP) 220 – computed temperature and concentration crude feedstocks 712 profiles 611 CSTR reactor see continuous stirred-tank – conjunction with combustion chambers reactor 505 610 Cyclar process 22 – curve-fitting techniques 608 cyclohexane–benzene interconversions 38 – elementary surface reactions 608 – exhaust-gas velocities 609 d – gaseous phase and catalytic combustion Davidson–Harrison model 523 607 Deacon process 17 – initiation reaction 607 De Donder relations 147, 154 – integral bundle, ceramic tubes 604 Debye’s equation 182 – intraphase diffusion and mass transport Debye–Waller factor 204 614 degree of rate control 147, 154 – mass-transfer coefficient 610 of butane 22 – metal supports 608 density functional theory (DFT) 3, 52, 102, – open-mesh wire structures 605 104, 152, 229, 302, 303, 343, 416, 417, 419 – Phang treatement 611 – Brønsted–Evans–Polanyi (BEP) relations – propane combustion 611 419 – propane oxidation 613 – macroscopic 421 – shallow fixed-bed tubular reactor 604 – metal alloy catalysts 421 – steady-state energy balance 612 – chemisorptions, energies 420 catalytic oxidation 517 – Pareto optimal catalysts 419, 421 catalytic RNAs 31, 32 – structural schematics and coordination catalytic wall reactors 486 number 423 CatApp –undopedTiO2 surface 429 – fcc and hcp surfaces 422 desorption – Haber–Bosch process 423 – precursor state 99, 101 – Quantum Materials Informatics Project –rates 96–98 422 – statistical mechanics 98, 99 – reaction and activation energies 421 DFT, see density functional theory 302, 303 catechol 7, 8 diesel production vegetable oils 9 cellulose-to-ethanol conversion cycle 657 differential anomalous X-ray scattering chemical turbulence 146, 150 (DAXS) 280 chemisorbed species 118–122 differential tubular reactor, see tubular reactors chromatographic analysis 259, 509 502 classical stochastic diffusion theory 99 diffuse reflectance IR Fourier transform Clausius–Clapeyron equation 81, 83 spectroscopy (DRIFTS) 273 CO 77, 78, 83, 84 diffusion effects 504 CO structure, Pd(100) surface 78, 79 diffusional constant 389 CoALPO-18 188, 280 diffusive flux 444 cocatalysts 669 distortionless enhancement of polarization coincidence structure 78 transfer (DEPT) 165 combined oligomerization 708 docking method 386, 387 commodity chemicals 9 donor–acceptor concentration 675 736 Index

DSC, see dye-sensitized cell Escherichia coli 12 dual-function catalyst 21, 25 ε-caprolactam 697, 698 Dubinin–Kaganer–Radushkevich (DKR) ethylene catalytic polymerization 216 equation 82, 112, 113 ethylene glycol production 58 DuPont strategy 57 European hydrogen and platform (HFP) dye-sensitized cell (DSC) 626, 628 679, 681 ‘Ewald construction’ 196 e exothermic adsorption 84, 85 4D electron microscopy 248, 249, 253 exothermic and endothermic reactions earth-abundant H2-evolution photocatalysts 492–494 664 exothermic catalysed reactions 501 earth-abundant O2-evolution photocatalysts exothermic gas–solid catalytic reaction 504 665 extended X-ray absorption fine structure ecofining process flow-scheme 705, 706 (EXAFS) 200–202, 204, 207, 209 Eddy diffusion coefficient 513 externally fluidized bed membrane reactor EFBMR see externally fluidized bed membrane 498, 596 reactor 498, 596 663, 664, 666, 676, 683 f electrochemical reduction of CO2 663 face-centred cubic (fcc) metals electron crystallography 245, 246 high-symmetry planes, 71 electron microscopy (EM) 240–242, Fe-based NH3 synthesis catalyst 687 244–249, 251, 253 Fe nanoparticle 683 electron spin resonance (ESR) 40, 214–216 Fermi levels 399, 400, 402 electron tomography (ET) 246, 247 Fermi–Dirac distribution function 400 electron-energy-loss spectroscopy (EELS) field-ion microscopy 127 40, 241–243, 249, 253, 275 first-order rate coefficients vs. active sites Eley–Rideal (ER) mechanism 67, 68, concentration, ZSM-5 34 128–130 Fisher–Tropsch catalysis ellipsometry 250–252 –C2 –C4 olefins 548 ellipsomicroscopy for surface imaging (EMSI) –C10 –C20 paraffins 548 252 –CO/H2 ratio 547 Elovich equation 93–96 –Fe2O3 556 endothermic chemisorption, hydrogen 86 – fluidized-bed reactors 548, 558 energetics of adsorption 113 – free energy, hydrocracking and methanol energy bands 547 – atomic arrays 393 – FT synthesis 559 – Brillouin zone 392 – Haldo Topsøe technology 559 – crystal orbitals and wave functions 391, – hydroxymethylene intermediates 550–553 392 – Lurgi gasifiers 557 – ID and 3D crystals 393–396 – methanation 548, 559, 560, 562 – density of states (DOS) plot 392, 393 – multi-tubular shell assembly 557, 558 – E(k) plot 392 – naphthas 558 – Fermi energy 392, 393 – nickel catalyst 548 – ionic solids 395, 397 – off-shore natural gas 559 – transition-metal oxides 398, 399 – polymerization 549 energy minimization (EM) methods 53, 115, – process conditions 555, 556 117 – SASOL plants 548, 558 energy-dispersive X-ray diffraction (EDXD) – Schultz–Flory plot 549, 554 technique 277 – steam reforming 563–568 engineered Escherichia coli 712 – sulfur, nitrogen and aromatics 548 environmental challenges 60 – syn-gas 546, 547, 558 environmental TEM (ETEM) 248, 250 – turbulent flow conditions 558 catalysis 43 Fischer–Tropsch processes 18, 21, 48, 102, enzymax analyser 31 660 Index 737

fixed-bed catalytic cracking 18 – catalytic membrane processes 596–601 fixed-bed-reactors 482–485 – CO, HC and NOx conversion 602 flowing-solids reactors 507 – ethyl benzene dehydrogenation 650, 651 fluid-to-solid transport effects 504 – European Union standards, automotive fluidized beds 523 exhaust 602 fluidized-bed reactors 522, 524 – in situ catalytic reaction and separation fluidized catalytic cracking (FCC) 18, 20, 701 592 fluorescence microscopy (FM) 239 – industrial reactor 651 fossil fuels 656–658, 680 – inorganic membrane reactors 645 free induction decay (FID) 219 – Mars–van Krevelen mechanism 648 Frenkel’s equation 87, 88 – methanol 541–546 Freundlich isotherm 82, 109, 110 – monochloronaphthalenes 646 friction force microscopy (FFM) 240 – motor vehicles 601 fuel cell 615 – organonitrogen compounds 648 – phenol–acetone condensation reaction g 645 γ-valerolactone (GVL) 714 – photocatalytic reduction 647 gas heated reformer (GHR) 494 – practical examples 650 gas-to-liquid (GTL) technologies 492 – prochiral alkene 645 gas–solid catalytic reactions 504 – shape-selective catalysis 647 Gauze temperature 528 – shape-selective olefin hydroformylation General Utility Lattice Programme (GULP) 645 53 – stoichiometric engine A/F 603 genetic algorithm (GA) techniques – temperature-programmed desorption 432, 433 (TPD) 647 genuine water-splitting photocatalytic systems – three-way catalyst (TWC) 601, 603, 604 660 heterogeneous catalyst glossary of terms and processes – platinum 349 heterogeneous catalysis, 5, 6 – theoretical treatments 415, 416 glucose isomerization 31 high-angle annular dark field (HAADF)-mode gold, reconstructed surface 73, 74 27 Gratzel̈ cell and influence 626, 627 high-resolution electron energy-loss green diesel production 705, 706 spectroscopy (HREELS) 189, 190, 417 green hydrocarbons and ethanol 716 high-resolution electron microscopy (HREM) 27, 125, 136, 241, 243–245, 248, 440, 645 h high resolution transmission electron H+-ZSM-5 125 micrographs (HRTEM) 645, 671 Hartree–Fock equations 377 high-temperature shift (HTS) reactor 493 heat fluxes 519 highest occupied molecular orbital (HOMO) heat-balance equations 513, 529 50, 120 heat-transfer coefficient 513, 520 Hitachi Green Center 663 heats of adsorption Honda–Fujishima cell 624 – decline 123–125 HRTE micrographs for Cu/Pt/TiOx-xh series – thermodynamic data 121, 123 of catalyst 671 Henry’s adsorption isotherm 109 hydrocarbon reforming 25 Hertz–Knudsen formula 86, 91 hydrocarbons catalytic oxidation 45 heterogeneous and homogeneous reactions hydrocarbons oxidation 215 comparison, 131, 132 hydrocracking 19, 20 heterogeneous catalysis 1, 4–6, 13, 14, 31, hydrodenitrification 20 33, 36–39, 41–45, 47–50, 52, 53, 163, 184, hydrodenitrogenation reactions 526 187, 215, 225, 238, 249, 268, 274, 275, 281 hydrodeoxygenation 714, 716 – auto-exhaust catalysis scene 601 hydrodesulfurization 20, 44, 45 – caprolactam 646 hydrogen and fuel cell applications 680 – catalytic 592–596 hydrogen economy 677 738 Index

hydrogenation reactions 507 isobars, adsorption 80, 81, 108 hydroxymethylfurfural 694 isobutene (2-methylpropylene) 387 isopulegol epoxide production 707 i isothermal fixed-bed reactor 514, 519 immobilized and cells 29–31 isotherms, adsorption 80, 82 immobilized metals 26, 27, 29 isotopic labelling 47, 48 immobilized organometallic compounds 27 itaconic acid (IA) 714, 715 in situ methods, catalyst study IUPAC classification, adsorption isotherms – categories 266 82 – CO hydrogenation 270 – combined X-ray absorption and X-ray k diffraction 278, 280 Kaganer’s isotherm 112, 113 – gas-chromatographic procedures 271 kinetic laws 503 – heterogeneous catalysts 267 kinetic models 149, 151, 153 – in situ X-ray, electron and neutron diffraction studies 275–278 l – infrared Raman, NMR, and x-ray absorption 14C-labelling 47 spectroscopy 273–275 ‘lab-on-a-chip’ concept 481 – isotopic labelling and transient response Langmuir isotherm 82, 105–109 269 Langmuir–Hinshelwood (LH) mechanism – mathematical analysis 272 37, 67, 68, 128–130, 132, 139 – methane synthesis 265 lattice energy minimization techniques 53 – nickel- and platinum-catalysed methanation lattice gas model 75 reaction 269 Lennard-Jones equation 114, 379 – TAP to SSITKA 272, 273 levulinic acid (LA) 714, 715 – temporal analysis 271 Lewis–Gray group 664 – XAFS studies 268 lignocellulosic biomass 714 in situ studies, XRD 181, 182 limit cycle diagram 142–144 incident photon to current conversion (IPCE) liquid film interfacial concentration 526 626 liquid-phase reactions 504 inductively coupled plasma mass spectrometry local density approximation (LDA) 416 (ICPMS) 175, 177 local density functional (LDF) method 377 industrial chemical reactors 510 longitudinal dispersion 514 industrial solid catalysts Lotka mechanism 134 – heterogeneous catalysis 163 Lotka–Volterra model 134, 136 – single-crystal model catalysts 164 low-energy electron diffraction (LEED) 38, industrial-scale applications, immobilized 40, 71, 193–197, 232 biocatalysts 31 industrial-style MoS2 nanocatalysts m – AC-TEM 363 M1 phase 690 – two-dimensional S-Mo-S layers 363 MAFBR, see membrane-assisted fluidized bed inelastic electron tunnelling spectroscopy reactors 497, 596 (IETS) 238 magic-angle-spinning NMR (MASNMR) inelastic neutron scattering (INS) 257 177, 220 infrared spectroscopy (IR) 184–189, 225, 228 magnetic resonance imaging (MRI) 165, 166, interparticle (fluid-to-solid) transfer resistance 216 505 manufacture of methyl t-butyl (MTBE) IPCE, see incident photon to current 495 conversion 626 Mars–van Krevelen mechanism 1, 46, 164, Ir4 clusters 207, 209 344 Ir(001), reconstructed surface 73 mass transfer iridium tin oxide (ITO) 666 – intraparticle diffusion 440–442 IrO2 nanoclusters 665 – interparticle mass and heat transfer 448, irreversible catalytic reactions 442, 443 449 Index 739

– non-isothermal conditions 445–447 microstructured reactors 485, 486 mass-transfer coefficient 527 microstructured string-reactor 487 Maxwell–Boltzmann statistics 91 mixed-metal carbonylates 27 MeALPO, see metal–aluminium–phosphate Mn-doped aluminophosphate catalysts 424, 368 425, 427 membrane-assisted fluidized bed reactors MOFs, see metal-organic-frameworks 303 (MAFBR) 497, 596 molecular beam technique 87, 88 mesoporous silicas 370, 373, 423, 426 molecular dynamics (MD) methods 116, 117, mesostructured Y zeolite 701, 703, 704 378 metal catalysts molecular sieve catalysts 276 – advanced acetates by direct addition Monte Carlo (MC) methods 75, 116, 117, (AVADA) 364 378 – Ag particles 345, 346 Monte Carlo scheme 381 – clay catalysts 365 MTBE, see methyl t-butyl ether 593 –Cu/ZnO/Al2O3 catalysts 347–349 multifunctional catalysis 41 – hydrocarbons 364 multifunctional reactors 480, 492–499 – inter lamellar 365 – montmorillonite, beidellite and hectorite 364 n – oxomolybdenum catalyst anion 366 Nafion® 9 metal gauze reactors 527 nanogold metal-organic frameworks (MOFs) 244, 301, – adsorption energies and geometries 357 303, 304, 675, 676 – Au(111) and Pt(111) surfaces, H2 metal-oxide catalysts 354 – arbitrary unit cell 360 – Au-CO and Au-O bonds 355 – crystallographic structures 359 – binding energy, CO and O 357, 358 – M1 type 360, 361 – in situ conditions 355, 356 – solid-state chemistry of complex 360 – carbon monoxide 354 – symmetry-breaking 359 – catalytic activity 356 – Te-oxo groups 360 – density functional theory 355 – ethanol, aqueous-phase oxidation 353 –V2O3 (0001) 362 metal-semiconductor junctions 403–406, –Fe2O3 and NiO 353 408 –H2-D2 exchange reaction 356 metallic grid microsctructured reactors – Langmuir–Hinshelwood (LH) mechanism 487 355 metallo-enzymes 658 – nanoglobules 353 METAPOCS program 383 –O2 adsorbate on metal surfaces 357 metathesis 413, 414 nanoporous catalysts 370–373, 375, 376 methanol decomposition 148, 152 nanoporous solids 343 methanol economy 682 nanorod catalysts 658 methanol synthesis 411, 412, 541–546 near-edge X-ray absorption fine structure methyl isocyanate (MIC) 54 (NEXAFS) 211, 213 methyl t-butyl ether (MTBE) 72, 387, 593, Nernst theory 36 595, 596 neutron scattering 252, 254–258 metropolis algorithm 381 nicotine, chromic acid oxidation 721 micro-channel reactors 481 Nocera’s artificial leaf 661 microalgae to bioethanol 718 non-dissociative adsorption 91, 105 microalgae to diesel 717, 718 non-dissociative and associative adsorption microchannel reactors 485–489, 491 106–109 microcrystalline catalysts 256, 257 non-enzymatic catalytic processing 655, 711, microcrystalline MeAPO-36 382 712, 714, 716 microkinetics 147, 148, 152 non-invasive methods, catalytic reactors microstructured falling film reactor (μ-FFR) – MRI 165, 167, 168 490, 491 – positron emission methods 170 740 Index

non-invasive methods, catalytic reactors – lube oils and asphalt 631 (continued) – refinery production 629 – spatially-resolved x-ray absorption petroleum reforming reactions 444 170–172 petroleum-derived jet fuel 709 non-invasive/in situ study, solid catalysts photo-electrochemical cells 431 1, 4 photo-emission electron microscopy (PEEM) non-isothermal catalytic reactors 520, 146, 147 531 photoanodes 624–626, 662–664 non-reactive ‘cage’ 49, 51 photocatalysts 655, 663, 667–669, 672, 673, nuclear magnetic resonance (NMR) 678 216–222, 224, 225 photocatalytic decomposition 669, 678 nylon 6, 697 photocatalytic systems 667, 676 photocatalytic water splitting 668 o photocorrosion 667 1-octanol retrosynthetic analysis 716 photoelectrochemical (PEC) O2- evolving catalysts (OEC) 661 – splitting of water 674 O–Si–O bonds 379 – hydrogen 664 olefin metathesis 411, 412 photoelectrochemistry 25, 26 oligomerization of lower olefins 19 photoelectrolysis 25 optical microscopy 250, 251, 254 photosynthesis 25, 618, 657 optimization procedures 381 photosystem II (PSII) 615, 617, 666 ordered adlayers 74–79 physically adsorbed species 114–117 ordered and reconstructed surfaces platinum – bond distances 199 – γ-Al2O3 350 – EXAFS 200–204, 206, 207, 209 – defect 349 – LEED 193 – hydrogen 350–352 – NEXAFS 211, 212, 214 – MASNMR measurements 350 – notations 198, 199 – monoatomic Pt functions 350 – SEXAFS 209, 210 – reducible oxides 349 – TPD 193 platinum-group metals (PMG) catalysts – two- and three-dimensional surface 682 crystallography 193, 194, 196, 197 plug and play’ process technology 480 – XANES 210, 211 PMO, see periodic mesoporous organosilanes oscillatory reactions 133–136 373 oxidative dehydrogenation 22 poisoned catalyst 457, 458 poisoning and promotion 463 p – adatom electronegativity 470 Péclet number 514, 516 – adsorption complexes 464 paraffin alkylation 19 – butadiene, selective hydrogenation 463 parametric sensitivity 532 – catalytic hydrogenation 468 Pareto-optimal catalysts 104 – cis-2-butene, hydrogenation reaction rate Patterson function 181 474 periodic mesoporous organosilanes (PMO) – CO–metal interaction 468 373, 375 – factors responsible 471, 472 peripheral carbide clusters 49, 51 – homogeneous catalysis 464 perovskite-based oxide catalysts 430 – molecular adsorption and catalytic activity petroleum industry 466 – atmospheric distillation column products – Monte Carlo approach 463 630 – n-, catalysed conversion 466 – catalytic cracking 633, 635–640 – occupied and unoccupied spin orbitals – catalytic reforming 631–633 469 – commodity products 630 – orbital contours 467, 470 – gas oil 630 – Pt–Re alloy catalyst 467 – hydrotreating 640–642, 644, 645 – sub-surface hydrogen 473 Index 741

– sulfided catalyst 464 – MOF nanoporous structure 293, 303 – surface carbon and sub-surface hydrogen – molecular/bulk diffusion 316, 317 473 – non-local density functional theory 301 poisoning of catalysts 16, 44 – nonuniform cross-section 314 Polanyi’s adsorption theory 110–112 – pore geometry 301 Polanyi–Wigner equation 96 – pore models 338 poly(ethylene furanoate) (PEF) 694 – porosity 298, 299 poly(ethylene terephthalate) (PET) 692, – practical considerations 305, 306 694–696 – preparations 295 poly-generation 481, 482 – probe molecules 296 polymerization of alkenes 22 – reaction rate 295 polyoxometalates 669 – resistance to diffusion with pellet 321 Porod’s law 180 – scattering and diffraction methods 296 porous catalysts 344, 345 – slab-shaped catalyst pellet 336 – acid-catalysed hydration 339 – spherical catalyst pellet 323–326 – advantages 301 – surface area measurement 295 – aluminophosphates and comparable solids – surface diffusion 314 293 – Thiele modulus 321, 323 – Bessel functions 322 – transition region of diffusion 318 – BET method 296 – transport mechanism 314 – capillary condensation 294 – wafer/slab-shaped catalyst pellet 320 – catalyst material 294 – Wheeler’s semi-empirical pore model, see – catalytic gas reaction, packed tubular reactor Wheeler’s semi-empirical pore model 332–334 308 –CO2 removal 340 positron-emission profiling (PEP) 170 – concentration gradient 319 positron-emission tomography (PET) 170 – cracking reactions 314 potential-energy diagrams 37 69, 70, – cylindrical catalyst pellet 322, 324 89, 90 – density functional theory 302, 303 precursor states 67–71, 99–101, – diffusion coefficient 315 130, 131 – effective diffusivity measurement 315 precursor-mediated desorption process 100 – experimental criterion, diffusion control ‘probe’ molecule dimensions, as adsorbates 331 173 – fractal approach 304 probing surfaces – gas adsorption and permeation 295 – electron spectroscopy merits and limitations – geometric model 319 190 – Hegedus’ and Petersen’s single catalyst pellet – HREELS 189 reactor 336 – infrared spectroscopy (IR) 184–189 – heterogeneous catalytic reaction 319, 339, process intensification 479, 480 340 propylene 6, 11, 15, 19, 22, 46–48 – homogeneous media 315 proton-conducting membrane 664 – hysteresis loops 294 proton-induced x-ray emission (PIXE) 175, – internal pore surface area 319 176 – intraparticle diffusion 319, 326–328 PROX (preferential oxidation) 676 – isotherm reconstruction methods 300 PSII, see photosystem II (PSII) 615 – isothermal spherical pellet 340 PtOH species 352 –KelvinEquationand x PV-driven electrolysis 661 Barrett–Joyner–Halenda method 300 gas hydrogenation 488 – kernel 301 – kinetic diameter 296 – Knudsen diffusion 317, 318, 339 q – krypton adsorption 337, 338 quantum chemical approaches 407 – Maxwellian diffusion 316, 317 quantum mechanical cluster 378 – mercury porosimetry 306–308, 338 quantum molecular dynamics methods 388 742 Index

r slurry reactors 507, 509 Raman spectroscopy 225, 254, 259, 273, 274 Slygin–Frumkin isotherm 110 Raschig process 698 small-angle scattering (SAXS) 179–181, 256 rates of adsorption 88–91 SMDS, see Shell middle distillate synthesis reactor design, catalytic process engineering (SMDS) 636 479–482 solar energy recycle reactors 506 – arctic ocean acts 615 redox reaction 665 – artificial photosynthesis 615–618 renewable chemicals preparation 711 – curtail/eliminate emission 614 18 renewable sources of energy 656 –D2 O 624 renewable-jet fuel 709, 710 – fuel cell 615 Reppe IG Farben/BASF 687 –generationofH2 and O2 618 residence times 87, 88 – genuine photocatalytic methods 615 reverse flow catalytic membrane reactors –Gratzel̈ cell and influence 626, 627 (RFCMR) 496, 596 – Honda–Fujishima cell 624 reverse Monte Carlo technique 381 – hydrogen and oxygen by catalysed photolysis Reynolds numbers 510, 513, 514 621–623 RFCMR see reverse flow catalytic membrane – hydrogen generation by photo-induced reactors reduction 620, 621 ribozymes 31, 32 – light-induced water-splitting reactions 619 Rideal–Eley mechanism 37 – oxygen generation by photo-induced Rietveld neutron powder profile procedure oxidation 619, 620 256 – photoanode and platinum 624 ring-opening metathesis polymerization – photocatalytic processes 626 (ROMP) 413 – photodissociation of water 625 RiveTM mesoporous zeolite-Y 704 – photoelectrosynthethis 625 the Russian ADAM–EVA cycle 58, 59 – photosynthesis 618 –platinizedTiO2 625 s – practical objectives 614 Sachtler–Fahrenfort plot 36 – splitting water 615 scanning transmission electron microscopy –SrTiO3 625 (STEM) 244 – storable forms 614 scanning tunnelling microscopy (STM) 4, – tandem cells 628, 629 127, 229–240 – UV-laser excitation 625 scanning tunnelling spectroscopy (STS) 238 solar energy conversion 660 Schottky barrier theory 403–406, 408 solar fuel cell 658, 659, 662–664 Schultz–Flory chain-length statistics 549 solar-driven catalytic reaction 658 selected-area Fourier diffractogram (SAFD) solar-fuel plants 659 245 solid acid catalysts 11, 18 selective oxidation 16, 18, 19, 22, 28 Solid Fuel Centre for Chemical Innovation selective oxidation catalysts 46 658 selectivity of catalysts 14–16 spatial variation, fixed-bed reactor 166, 167, self-cooled tubular reactors 521, 529 169 semiconductor (SC)/liquid junctions 660 spatially-resolved x-ray absorption semiconductor catalyst microcapsule 25, 26 170, 172 serial femtosecond crystallography (SFX) spatio-temporal behaviour and turbulence 275, 276 145, 146, 149 Shell middle distillate synthesis (SMDS) 559, spin–echo double resonance (SEDOR) 224 636 spinning-basket catalytic reactor 505 silicalite 431 SSHCs see single-site heterogeneous catalysts -based T-shaped microreactor 488 343 silicon-glass microreactor 488, 491 statistical mechanics, adsorption 91, 92 single-site heterogeneous catalysts (SSHCs) steady-state isotopic transient kinetic analysis 4, 125, 343, 700, 720–722 (SSITKA) 272 Index 743 steam reforming thiophene (C4H4S) 233 – catalysts 687 three-way catalyst (TWC) 603, 604 – of methane 15 TiIV ions 423, 425, 426 – reaction 426, 428 time-resolved X-ray diffraction 277 steam–hydrocarbon reaction 21 TiO2-based photo-responsive solids 676 ‘structure-insensitive’ catalytic reaction 41 TiO4 species 678 ‘structure-sensitive’ catalytic reaction 41 traditional methods, catalyst characterization sum frequency generation (SFG) 225–228 173 surface bonds strength determination 259 transient phenomena 139, 141–144 – FDS 260 transition metals 389 – magnitude of heat and of adsorption – band widths, DOS and Fermi levels 408, 263 409 – TPD 260 – CO chemisorption 410, 411 – TPRS 262 transition states (TS) 101, 154 surface crystallographic studies with EXAFS transition-metal chalcogenides 44 (SEXAFS) 200, 209, 210, 225 transmission EM (TEM) 241, 242 surface defects 382 trickle-bed reactors 482, 483, 488, 490, 525 surface electronic states 402, 403 triglycerides transesterifictaion 11 surface segregation 384 tubular reactors 501, 502, 504 surface-derivatized catalysts 207, 209 turnover frequency (TOF) 33, 34, 665 sustainable methanol 683 synthesis gas (syn-gas) 11, 15, 16, 18, 21, 64 u – ammonia synthesis 564 ultraviolet-visible and photoluminescence – ATR 545 spectroscopy – CO 544 – adsorption of light 191 –CO/H2 mixtures 547 – electronic transitions UV-vis-NIR 191 – Fischer–Tropsch synthesis 547, 548 – photoluminescent spectrum 191, 193 – methane production 559 – sensitive detectors 192 – methanol 541, 544 uniform heterogeneous catalysts 124 – natural gas 545 UV-vis spectra of TiO thin films 672 – purification 558 2 synthetic cordierite (Mg2Al4Si5O18)24 synthetic zeolite catalysts 19 v van der Waals adsorption 68 t van der Waals interactions 37, 389 Tanaka–Tamaru plot 36 vibrational activation 90 tandem cells 628, 629 virial equation of state 82, 112, 113 TAPO-5 700 volcano plots 35, 36, 45, 46 technological challenges 60 Temkin isotherm 82, 110 w Temkin–Pyzhev description 93 Wacker process 15 temperature-programmed desorption (TPD) wall-to-bed heat-transfer 522 193 water gas shift (WGS) reactives 565 temperature-programmed reaction water oxidation 666 spectroscopy (TPRS) 262 water oxidation photocatalysis 669 terephthalic acid 697 water splitting 670 thermal and mechanical stability 24 Wheeler’s semi-empirical pore model thermal hysteresis 140–142 – BET surface area 308 thermal instabilities 138 – bidisperse systems 311 thermochemical cycles 59 – catalyst particle 309 thermochemical reactions 724–726 – dusty gas model 310 ‘’ 16, 17 – macro- and micro-voidages 311 thermophilic cyanobacterium 666 – pellet porosity 309 thin films of TiO2 670 – pore volume 309 744 Index

Wheeler’s semi-empirical pore zeolites 80, 81, 83, 85, 110, 115, 117 model (continued) zeolite framework crystal structures 431 – pore walls 309 zeolitic solid catalysts – porous media 308 – aluminosilicates 366 – statistical network theory 311 –Brønstedacidcentres 366 – stochastic pore networks and fractals – Cambridge–Tubingen–London̈ (CTL) 311–313 team 368 work function 119 – framework density (FD) 369, 370 + –H-bondedH3O ions 367 x – metal–aluminium–phosphate (MeALPO) X-ray absorption near-edge spectroscopy 368 (XANES) 170, 200, 210, 211 – microporous aluminosilicate catalysts 365 X-ray absorption spectroscopy 661 – molecular sieves 366 X-ray diffraction (XRD) 177–179, 181, 183, – petrochemicals production 365 184 – probe molecules and intracrystalline X-ray emission (XRE) 175, 176 cavities 367 X-ray fluorescence (XRF) 175, 176 – siliceous ZSM-5 366 X-ray photoelectron spectra (XPS) 94 – three-dimensional (3D) open-structure X-ray-induced photoelectron spectroscopy solids 368 (XPS) 177, 191 – three-dimensional (3D) surfaces 366 xenon, adsorption 116 zero-field NMR 224 zero-point energy 92, 98 z Ziegler–Natta catalyst 23 Z-scheme 667 Ziegler–Natta conversions 23 ZeoFile anthology 431 ZSM-5 zeolites 708