345, 346, 349 Acid-Catalysed Dehydrat

Total Page:16

File Type:pdf, Size:1020Kb

345, 346, 349 Acid-Catalysed Dehydrat 733 Index a ALPO-18 catalyst 188, 280 ab initio calculations 377, 411, 412 aluminophosphate MeAPO-36 382 aberration-corrected electron microscopy aluminosilicates 382 (AC-TEM) 345, 346, 349 ammonia acid-catalysed dehydration 8 – absorption tower 585 –fructose 9,10 – adsorbed nitrogen 575, 576 acid-catalysed esterification 17 – Badische Anilin und Soda Fabrik (BASF) acrolein 690, 692 laboratories 569 acrylic acid 690 – BASF catalyst S6-10 570, 574 acrylonitrile 688–690 –CO2 removal 585 activation energy, chemisorption 101–104 – and copper catalyst 585 acyclic diene metathesis (ADMET) 413 – crystalline α-Fe phase 574 adiabatic reactors 516–518 – ex situ X-ray diffraction studies 574 adipic acid 697, 698, 700 – Fe catalysts 570 adsorbate 67 – high-temperature treatment 573 adsorption – in situ X-ray powder diffractometric studies – clean solids 71–74 574 –definition 67 – methanation 585 – energetics 113–126 – methane 585 – heterogeneous reactions 132–140, –N2 fixation 568 142–147, 151 – natural gas 583 – isotherms and isobars 79–88, 90–101 – nitrogen-containing compounds 568 – isotherms, kinetic principles 105–113 – oxidation 588–592 – microkinetics 147, 148, 152–154 – potassium 582 – mobility 126, 127 – potential-energy diagram 580 – ordered adlayers 74–76, 79 – primary reforming furnace 583 – physical, chemisorptions and precursor – process streams 585 states 67–70 – production 569 – surface reactions 127–129, 131, 132 – promoted iron catalyst composition 573 AES analysis see Auger electron spectroscopic – promoters 570 (AES) analysis 573 – reactor configurations 585–588 affinity coefficient 111 – reforming reactions 583 agostic interactions 49, 51 – Ru-based catalysts 570 Al2O3/CeO2/noble metal 385 – shift converters 583 algae biofuel challenge 13 – steam-reforming reactions 583 Algenol 13 – surface hydrogen 578–580 alkaline-earth oxides 430 – surface nitride 576–578 ALPO structure 384 – synthesis reactor 649 Principles and Practice of Heterogeneous Catalysis, Second Edition. Sir John M. Thomas and W. J. Thomas. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 734 Index ammonia (continued) Born model 379 – Temkin–Pyzhev description 571–573 Brønsted catalysts 42, 43 – typical arrangement, plant 584 Brønsted-acid catalysed isomerization 720 – world population 569, 570 Brønsted–Evans–Polanyi (BEP) plot 562 – X-ray photoelectron spectrum 573 Brønsted–Evans–Polanyi (BEP) relation 52, ammonia oxidation 527 101–103, 415 ammonia synthesis reactor 520 bridging hydroxyl groups 383 ammoxidation process 22 BRIMTM 232, 237 ammoxidation 22, 176, 589, 687 Brunauer classification 80 argon adsorption isotherm 703 Brunauer–Emmett–Teller (BET) isotherm aromatic alkylation 708 82, 110 artificial leaf 661, 662 Brunauer–Emmett–Teller (BET) method artificial photosynthesis systems 661 – energetic heterogeneity 297 atomic and ionic polarization 379 – fractal analysis 297 atomic force microscopy (AFM) 229, 230, – nitrogen 297 239, 240 – principle 297 atomistic studies 385, 389 – surface area 297 attenuated total reflection (ATR) IR – transformations 297 spectroscopy 189 butene isomer binding energies, ZSM-5 387 Auger electron spectroscopy (AES) 40, 177, 190, 573, 575, 576 c auto-exhaust catalysts 23, 24, 46 catalytic reactors, coupling and decoupling auto-thermal reactors (ATR) 493 489 autocatalysis 133, 134, 144 C-hexene 423, 425, 426 autothermal syngas production 492 Caltech–Swiss solar reactor 726 AVADA (advanced acetates by direct addition) Cambridge–Tubingen–London̈ (CTL) team 364 368 Atzel cell 626 capillary-microreactor 487 caprolactam 646, 697, 698 b carbenium 637, 642 Balandin volcano plot 35 carbohydrates starch and cellulose derived 7 band bending 403–406, 408 carbon nanotubes (CNT) 664, 683 batch reactors 499, 500, 501, 510–512 cascade catalytic reactions 700, 701 Belousov–Zhabotinskii (BZ) reaction 133 catalysed hydrolysis of starch 16 benzene-free synthesis, catechol 7, 8 catalyst characterization methods 174, 175 BEP plot, see Brønsted–Evans–Polanyi (BEP) catalyst deactivation plot 562 – models 455–457, 459–462 BET see Brunauer–Emmett–Teller 296 – processes 452–454 bifunctional catalysts 42, 449–451 catalyst packing 515 bimetallic catalysts 721–723 catalyst poisoning 37, 459, 460, 462 bimetallic cluster catalysts 206–209 catalysts design 719 bimetallic nanoparticles 53 catalytic cracking 18, 19, 42 bioinspired photosystems 659 – cycloparaffins 635 biomass 657 – FCC catalyst 638–640 biomass-derived carbon feedstocks 695 – fluid catalytic cracking (FCC) 634 biomass-derived polyols 8 – heavy gas oil or vacuum gas oil (HVGO) biorefineries 655 634 bismuth molybdates 688, 689, 722 – high-activity robust catalysts 634 bismuth molybdate catalysts 47, 688, 689, – petroleum refineries 635 722 – Shell middle distillate synthesis (SMDS) blue-coloured light 659 636 body-centred cubic (bcc) metals – ‘syn-gas’ 636 high-symmetry planes, 71, 72 catalytic cycle 148 Boltzmann statistics 86, 380, 401 catalytic hydrogenation 17, 507 Index 735 catalytic hydrothermal reactor (Cat-HTR) computer modelling techniques 377 706 concentration instabilities 139, 140 catalytic monolith continuous reactors 510, 513 – applications 605 continuous stirred-tank reactor (CSTR) 504, – automobile exhaust applications 609 505 – catalytic and homogeneous oxidation 611 conventional gas–liquid adsorbers 485 – catalytic combustion chamber 604 conventional transportation fuels 707 – chemical and physical effects 610, 611 Core-Shell Co-Catalysts 669 – CO formation 607 countercurrent flow 526 – combustion processes 606 cross-polarization (CP) 220 – computed temperature and concentration crude feedstocks 712 profiles 611 CSTR reactor see continuous stirred-tank – conjunction with combustion chambers reactor 505 610 Cyclar process 22 – curve-fitting techniques 608 cyclohexane–benzene interconversions 38 – elementary surface reactions 608 – exhaust-gas velocities 609 d – gaseous phase and catalytic combustion Davidson–Harrison model 523 607 Deacon process 17 – initiation reaction 607 De Donder relations 147, 154 – integral bundle, ceramic tubes 604 Debye’s equation 182 – intraphase diffusion and mass transport Debye–Waller factor 204 614 degree of rate control 147, 154 – mass-transfer coefficient 610 dehydrogenation of butane 22 – metal oxide supports 608 density functional theory (DFT) 3, 52, 102, – open-mesh wire structures 605 104, 152, 229, 302, 303, 343, 416, 417, 419 – Phang treatement 611 – Brønsted–Evans–Polanyi (BEP) relations – propane combustion 611 419 – propane oxidation 613 – macroscopic reaction rate 421 – shallow fixed-bed tubular reactor 604 – metal alloy catalysts 421 – steady-state energy balance 612 – oxygen chemisorptions, energies 420 catalytic oxidation 517 – Pareto optimal catalysts 419, 421 catalytic RNAs 31, 32 – structural schematics and coordination catalytic wall reactors 486 number 423 CatApp –undopedTiO2 surface 429 – fcc and hcp surfaces 422 desorption – Haber–Bosch process 423 – precursor state 99, 101 – Quantum Materials Informatics Project –rates 96–98 422 – statistical mechanics 98, 99 – reaction and activation energies 421 DFT, see density functional theory 302, 303 catechol 7, 8 diesel production vegetable oils 9 cellulose-to-ethanol conversion cycle 657 differential anomalous X-ray scattering chemical turbulence 146, 150 (DAXS) 280 chemisorbed species 118–122 differential tubular reactor, see tubular reactors chromatographic analysis 259, 509 502 classical stochastic diffusion theory 99 diffuse reflectance IR Fourier transform Clausius–Clapeyron equation 81, 83 spectroscopy (DRIFTS) 273 CO molecules 77, 78, 83, 84 diffusion effects 504 CO structure, Pd(100) surface 78, 79 diffusional constant 389 CoALPO-18 188, 280 diffusive flux 444 cocatalysts 669 distortionless enhancement of polarization coincidence structure 78 transfer (DEPT) 165 combined oligomerization 708 docking method 386, 387 commodity chemicals 9 donor–acceptor concentration 675 736 Index DSC, see dye-sensitized cell Escherichia coli 12 dual-function catalyst 21, 25 ε-caprolactam 697, 698 Dubinin–Kaganer–Radushkevich (DKR) ethylene catalytic polymerization 216 equation 82, 112, 113 ethylene glycol production 58 DuPont strategy 57 European hydrogen and fuel platform (HFP) dye-sensitized cell (DSC) 626, 628 679, 681 ‘Ewald construction’ 196 e exothermic adsorption 84, 85 4D electron microscopy 248, 249, 253 exothermic and endothermic reactions earth-abundant H2-evolution photocatalysts 492–494 664 exothermic catalysed reactions 501 earth-abundant O2-evolution photocatalysts exothermic gas–solid catalytic reaction 504 665 extended X-ray absorption fine structure ecofining process flow-scheme 705, 706 (EXAFS) 200–202, 204, 207, 209 Eddy diffusion coefficient 513 externally fluidized bed membrane reactor EFBMR see externally fluidized bed membrane 498, 596 reactor 498, 596 electrocatalysts 663, 664, 666, 676, 683 f electrochemical reduction of CO2 663 face-centred cubic (fcc) metals electron crystallography 245, 246 high-symmetry planes, 71 electron microscopy (EM) 240–242, Fe-based NH3 synthesis catalyst 687 244–249, 251, 253 Fe nanoparticle 683 electron spin resonance (ESR) 40, 214–216 Fermi levels 399, 400, 402 electron tomography (ET) 246, 247 Fermi–Dirac distribution function 400 electron-energy-loss spectroscopy (EELS) field-ion microscopy 127 40, 241–243, 249, 253, 275 first-order rate coefficients vs.
Recommended publications
  • Patnaik-Goldfarb-2016.Pdf
    CONTINUOUS ACTIVATION ENERGY REPRESENTATION OF THE ARRHENIUS EQUATION FOR THE PYROLYSIS OF CELLULOSIC MATERIALS: FEED CORN STOVER AND COCOA SHELL BIOMASS * *,** ABHISHEK S. PATNAIK and JILLIAN L. GOLDFARB *Division of Materials Science and Engineering, Boston University, 15 St. Mary’s St., Brookline, MA 02446 **Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215 ✉Corresponding author: Jillian L. Goldfarb, [email protected] Received January 22, 2015 Kinetics of lignocellulosic biomass pyrolysis – a pathway for conversion to renewable fuels/chemicals – is transient; discreet changes in reaction rate occur as biomass composition changes over time. There are regimes where activation energy computed via first order Arrhenius function yields a negative value due to a decreasing mass loss rate; this behavior is often neglected in the literature where analyses focus solely on the positive regimes. To probe this behavior feed corn stover and cocoa shells were pyrolyzed at 10 K/min. The activation energies calculated for regimes with positive apparent activation energy for feed corn stover were between 15.3 to 63.2 kJ/mol and for cocoa shell from 39.9 to 89.4 kJ/mol. The regimes with a positive slope (a “negative” activation energy) correlate with evolved concentration of CH4 and C2H2. Given the endothermic nature of pyrolysis, the process is not spontaneous, but the “negative” activation energies represent a decreased devolatilization rate corresponding to the transport of gases from the sample surface. Keywords: Arrhenius equation, biomass pyrolysis, evolved compounds, activation energy INTRODUCTION Fossil fuels comprise the majority of the total energy supply in the world today.1 One of the most critical areas to shift our dependence from fossil to renewable fuels is in energy for transportation, which accounts for well over half of the oil consumed in the United States.
    [Show full text]
  • Australian Curriculum: Science Aboriginal and Torres Strait Islander
    Australian Curriculum: Science Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority Content elaborations and teacher background information for Years 7-10 JULY 2019 2 Content elaborations and teacher background information for Years 7-10 Australian Curriculum: Science Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority Table of contents Introduction 4 Teacher background information 24 for Years 7 to 10 Background 5 Year 7 teacher background information 26 Process for developing the elaborations 6 Year 8 teacher background information 86 How the elaborations strengthen 7 the Australian Curriculum: Science Year 9 teacher background information 121 The Australian Curriculum: Science 9 Year 10 teacher background information 166 content elaborations linked to the Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority Foundation 10 Year 1 11 Year 2 12 Year 3 13 Year 4 14 Year 5 15 Year 6 16 Year 7 17 Year 8 19 Year 9 20 Year 10 22 Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority 3 Introduction This document showcases the 95 new content elaborations for the Australian Curriculum: Science (Foundation to Year 10) that address the Aboriginal and Torres Strait Islander Histories and Cultures cross-curriculum priority. It also provides the accompanying teacher background information for each of the elaborations from Years 7 -10 to support secondary teachers in planning and teaching the science curriculum. The Australian Curriculum has a three-dimensional structure encompassing disciplinary knowledge, skills and understandings; general capabilities; and cross-curriculum priorities. It is designed to meet the needs of students by delivering a relevant, contemporary and engaging curriculum that builds on the educational goals of the Melbourne Declaration.
    [Show full text]
  • Scale-Up of Reactive Distillation Columns with Catalytic Packings
    SCALE-UP OF REACTIVE DISTILLATION COLUMNS WITH CATALYTIC PACKINGS Achim Hoffmann, Christoph Noeres, Andrzej Górak Department of Chemical Engineering, Dortmund University, 44221 Dortmund, Germany ABSTRACT The scale-up of reactive distillation columns with catalytic packings requires the knowledge of reaction kinetics, phase equilibrium and packing characteristics. Therefore, pressure drop, liquid holdup and separation efficiency have been determined for the catalytic packing MULTIPAK®. A new hydrodynamic model that describes the counter-current gas-liquid flow for the whole loading range and considers the influence of the column diameter has been implemented into a rate- based column model. Simulation results for the methyl acetate synthesis are compared with pilot plant experiments that cover a wide range of different process conditions. The experiments are in good agreement with the simulation results and confirm the applicability of the modelling approach for reactive distillation processes with catalytic packings. INTRODUCTION The combination of heterogeneously catalysed reaction and separation in one single process unit, known as catalytic distillation, is one of the most common applications of the multifunctional reactor concept [1]. In comparison to the conventional approach, where reaction and separation are carried out sequentially, catalytic distillation can considerably improve the process performance [2,3]. One of the advantages is the elimination of equipment for product recovery and recycling of unconverted reactants, which leads to savings in investment and operating costs. Catalytic distillation may also improve selectivity and mass transfer and avoid catalyst fouling [4]. Even if the invention of catalytic distillation dates back to 1966 [5], the number of processes in which catalytic distillation has been implemented on a commercial scale is still quite limited but the potential of this technique goes far beyond today’s applications [6].
    [Show full text]
  • Whoosh Bottle
    Whoosh Bottle Introduction SCIENTIFIC Wow your students with a whoosh! Students will love to see the blue alcohol flame shoot out the mouth of the bottle and watch the dancing flames pulsate in the jug as more air is drawn in. Concepts • Exothermic reactions • Activation energy • Combustion Background Low-boiling alcohols vaporize readily, and when alcohol is placed in a 5-gallon, small-mouthed jug, it forms a volatile mixture with the air. A simple match held by the mouth of the jug provides the activation energy needed for the combustion of the alcohol/air mixture. Only a small amount of alcohol is used and it quickly vaporizes to a heavier-than-air vapor. The alcohol vapor and air are all that remain in the bottle. Alcohol molecules in the vapor phase are farther apart than in the liquid phase and present far more surface area for reaction; therefore the combustion reaction that occurs is very fast. Since the burning is so rapid and occurs in the confined space of a 5-gallon jug with a small neck, the sound produced is very interesting, sounding like a “whoosh.” The equation for the combustion reaction of isopropyl alcohol is as follows, where 1 mole of isopropyl alcohol combines with 4.5 moles of oxygen to produce 3 moles of carbon dioxide and 4 moles of water: 9 (CH3)2CHOH(g) + ⁄2O2(g) → 3CO2(g) + 4H2O(g) ∆H = –1886.6 kJ/mol Materials Isopropyl alcohol, (CH3)2CHOH, 20–30 mL Graduated cylinder, 25-mL Whoosh bottle, plastic jug, 5-gallon Match or wood splint taped to meter stick Fire blanket (highly recommended) Safety shield (highly recommended) Funnel, small Safety Precautions Please read all safety precautions before proceeding with this demonstration.
    [Show full text]
  • Low Temperature Oxidation of Ethylene by Silica-Supported Platinum Catalysts
    Title Low Temperature Oxidation of Ethylene by Silica-Supported Platinum Catalysts Author(s) SATTER, SHAZIA SHARMIN Citation 北海道大学. 博士(理学) 甲第13360号 Issue Date 2018-09-25 DOI 10.14943/doctoral.k13360 Doc URL http://hdl.handle.net/2115/71989 Type theses (doctoral) File Information SHAZIA_SATTER.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Low Temperature Oxidation of Ethylene by Silica-Supported Platinum Catalysts (シリカ担持白金触媒によるエチレンの低温酸化) Shazia Sharmin Satter Hokkaido University 2018 Content Table of Content 1 General Introduction 1.1 General Background: Heterogeneous Catalysts to Ethylene Oxidation 1 – Friend or Foe? 1.2 Mesoporous Silica 1.2.1 An Overview 2 1.2.2 Synthesis Pathway and Mechanism of Formation of Mesoporous 4 Materials 1.2.3 Surface Property and Modification of Mesoporous Silica 7 1.3 Platinum Nanoparticle Supported Mesoporous Silica 9 1.4 Oxidation of Ethylene 1.4.1 Ethylene – Small Molecule with a Big Impact 11 1.4.2 Heterogeneous Catalysis Making Way through Ethylene Oxidation 14 1.5 Objective of the Work 19 1.6 Outlines of the Thesis 20 References 22 2 Synthesis, Characterization and Introduction to Low Temperature Ethylene Oxidation over Pt/Mesoporous Silica 2.1 Introduction 33 2.2 2.2 Experimental 35 2.2.1 Chemicals 35 2.2.2 Preparation of Mesoporous Silica, SBA-15 35 2.2.3 Impregnation of Pt in SBA-15 and Aerosol Silicas 36 2.2.4 Characterization 36 2.2.5 Ethylene Oxidation with a Fixed-Bed Flow Reactor 37 2.3 Results and Discussion 39 I Content 2.3.1 Characterization
    [Show full text]
  • 5.3 Controlling Chemical Reactions Vocabulary: Activation Energy
    5.3 Controlling Chemical Reactions Vocabulary: Activation energy – Concentration – Catalyst – Enzyme – Inhibitor - How do reactions get started? Chemical reactions won’t begin until the reactants have enough energy. The energy is used to break the chemical bonds of the reactants. Then the atoms form the new bonds of the products. Activation Energy is the minimum amount of energy needed to start a chemical reaction. All chemical reactions need a certain amount of activation energy to get started. Usually, once a few molecules react, the rest will quickly follow. The first few reactions provide the activation energy for more molecules to react. Hydrogen and oxygen can react to form water. However, if you just mix the two gases together, nothing happens. For the reaction to start, activation energy must be added. An electric spark or adding heat can provide that energy. A few of the hydrogen and oxygen molecules will react, producing energy for even more molecules to react. Graphing Changes in Energy Every chemical reaction needs activation energy to start. Whether or not a reaction still needs more energy from the environment to keep going depends on whether it is exothermic or endothermic. The peaks on the graphs show the activation energy. Notice that at the end of the exothermic reaction, the products have less energy than the reactants. This type of reaction results in a release of energy. The burning of fuels, such as wood, natural gas, or oil, is an example of an exothermic reaction. Endothermic reactions also need activation energy to get started. In addition, they need energy to continue.
    [Show full text]
  • NONLINEAR MODEL PREDICTIVE CONTROL of a REACTIVE DISTILLATION COLUMN by ROHIT KAWATHEKAR, B.Ch.E., M.Ch.E. a DISSERTATION IN
    NONLINEAR MODEL PREDICTIVE CONTROL OF A REACTIVE DISTILLATION COLUMN by ROHIT KAWATHEKAR, B.Ch.E., M.Ch.E. A DISSERTATION IN CHEMICAL ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Chairperson of the ConrnuS^ Accepted bean of the Graduate School May, 2004 ACKNOWLEDGEMENTS I am blessed with all nice people around me through out my life. While working on research project for past four years, many people have influenced my life and my thought processes. It is almost an impossible job to acknowledge them in a couple of pages or for that matter in limited number of words. I would like to express my sincere thanks to my advisor Dr. James B. Riggs for his financial support, guidance, and patience throughout the project. I would like to express my thanks to Dr. Karlene A. Hoo for her valuable graduate-level courses in the area of process control as well as for her guidance as a graduate advisor. I would also like to thank Dr. Tock, Dr, Leggoe, and Dr. Liman for being a part of my dissertation committee. My sincere thanks to Mr. Steve Maxner, my employer at the Vietnam Archive, for providing me the financial support during my last years of curriculum. I would like to take this opportunity to thank all the staff members and colleagues at Vietnam Archive for making me a part of their organization. A person, without her, this accomplishment would have been incomplete, is my wife, Gouri (Maaoo).
    [Show full text]
  • Fuel Cell: Building up Activation Energy Fuel Cell: Building up Activation Energy
    Source: fleeteurope.com Date: Friday 6, October 2017 Keyword: HyFIVE Fuel Cell: Building up activation energy Fuel Cell: Building up activation energy. Any new groundbreaking technology follows the Arrhenius law: you need a certain activation energy before a reaction starts. That is why the EU, five carmakers and tens of partners bundle their forces to get the ‘hydrogenation’ going. Fuel cell vehicles (FCEVs) have a lot going for them. They are basically electric cars with an integrated power plant that runs on pressurised hydrogen. This allows them to drive longer distances (500 km) than plug-in electric vehicles, with no tailpipe emissions but clean water. Refuelling takes just a couple of minutes. As they do not emit any CO 2 or harmful gases, FCEVs are granted fiscal benefits. However, there are a few major drawbacks. As the high R&D costs can only be carried by a few thousand vehicles today, FCEVs are twice as expensive as their conventionally powered peers. Moreover, there are hardly any hydrogen refuelling stations, because there are hardly any FCEVs, and vice versa. Europe has no more than 90 fuelling points, a third of which are located in Germany. Europe’s helping hand: HyFIVE and H2ME To help adopt hydrogen-powered e-mobility as a way to reduce emissions, the European Union, together with 15 partners, created the Hydrogen for Innovative Vehicles (HyFIVE) demonstration project. Five carmakers – BMW, Daimler, Honda, Hyundai and Toyota – deploy 185 fuel-cell vehicles to prospective drivers in Austria, Denmark, Germany, Italy, Sweden and the UK. The project will also create clusters of refuelling station networks to provide refuelling choice and convenience to early users of FCEVs.
    [Show full text]
  • The Effect of Rare-Earth Element Additions on Microstructural
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 The effect of rare-earth element additions on microstructural properties and irradiation behavior of an Fe-Ni-Cr alloy for LMFBR and fusion reactor applications Jin-Young Park Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Engineering Commons Recommended Citation Park, Jin-Young, "The effect of rare-earth element additions on microstructural properties and irradiation behavior of an Fe-Ni-Cr alloy for LMFBR and fusion reactor applications " (1983). Retrospective Theses and Dissertations. 8426. https://lib.dr.iastate.edu/rtd/8426 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages.
    [Show full text]
  • THERMAL and SELF-IGNITION PROPERTIES of SIX EXPLOSIVES
    NATIONAL BUREAU OF STANDARDS REPORT 65^8 THERMAL AND SELF-IGNITION PROPERTIES OF SIX EXPLOSIVES by J. J. Loftus and D. Gross U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended hv Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau’s work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope 'of activities is suggested by the listing of divisions and sections on the inside of the back cover. Reports and Publications The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agene> of a particular project or program. Published papers appear either in the Bureau’s own series of publications or in the journals of professional and scientific societies.
    [Show full text]
  • Effect of Natural Aging on Oak Wood Fire Resistance
    polymers Article Effect of Natural Aging on Oak Wood Fire Resistance Martin Zachar 1, Iveta Cabalovˇ á 2,* , Danica Kaˇcíková 1 and Tereza Jurczyková 3 1 Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovakia; [email protected] (M.Z.); [email protected] (D.K.) 2 Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovakia 3 Department of Wood Processing, Czech University of Life Sciences in Prague, Kamýcká 1176, 16521 Praha 6-Suchdol, Czech Republic; jurczykova@fld.czu.cz * Correspondence: [email protected]; Tel.: +421-4-5520-6375 Abstract: The paper deals with the assessment of the age of oak wood (0, 10, 40, 80 and 120 years) on its fire resistance. Chemical composition of wood (extractives, cellulose, holocellulose, lignin) was determined by wet chemistry methods and elementary analysis was performed according to ISO standards. From the fire-technical properties, the flame ignition and the spontaneous ignition temperature (including calculated activation energy) and mass burning rate were evaluated. The lignin content does not change, the content of extractives and cellulose is higher and the content of holocellulose decreases with the higher age of wood. The elementary analysis shows the lowest proportion content of nitrogen, sulfur, phosphor and the highest content of carbon in the oldest wood. Values of flame ignition and spontaneous ignition temperature for individual samples were very similar. The activation energy ranged from 42.4 kJ·mol−1 (120-year-old) to 50.7 kJ·mol−1 (40-year- old), and the burning rate varied from 0.2992%·s−1 (80-year-old) to 0.4965%·s−1 (10-year-old).
    [Show full text]
  • Energy Technology Solutions
    Welcome Dear Stakeholder, The economic challenges facing American industry today highlight the critical need Innovation is vital for innovative technology solutions that will increase productivity, sustainability, and competitiveness. At the Industrial Technologies Program (ITP), we work to to economic and identify promising innovations and accelerate their progress through the research and development pipeline. All of us at ITP are pleased to present this overview of environmental technologies from our research partnerships. sustainability in Partnership is key to our success. Our industrial partners help us identify and U.S. industry. pursue technology research opportunities that are too risky for industry to undertake alone —yet promise broad benefits across the manufacturing sector. This partnership approach has succeeded year after year in providing industry with technologies, tools, and practices to save energy and stimulate growth. Our products are actively making a difference by helping U.S. companies succeed in tough global markets. Since ITP’s inception, the program and its partners have successfully launched 220 new, energy-effi cient technologies and received 51 R&D 100 Awards. Collectively, these technologies and other program activities have cut carbon emissions by 206 million tons and saved 9.3 quadrillion British thermal units (Btu). We are proud to be serving American industry under the guidance of the U.S. Department of Energy’s (DOE’s) Offi ce of Energy Effi ciency and Renewable Energy. We invite you to learn more about
    [Show full text]