345, 346, 349 Acid-Catalysed Dehydrat
Total Page:16
File Type:pdf, Size:1020Kb
733 Index a ALPO-18 catalyst 188, 280 ab initio calculations 377, 411, 412 aluminophosphate MeAPO-36 382 aberration-corrected electron microscopy aluminosilicates 382 (AC-TEM) 345, 346, 349 ammonia acid-catalysed dehydration 8 – absorption tower 585 –fructose 9,10 – adsorbed nitrogen 575, 576 acid-catalysed esterification 17 – Badische Anilin und Soda Fabrik (BASF) acrolein 690, 692 laboratories 569 acrylic acid 690 – BASF catalyst S6-10 570, 574 acrylonitrile 688–690 –CO2 removal 585 activation energy, chemisorption 101–104 – and copper catalyst 585 acyclic diene metathesis (ADMET) 413 – crystalline α-Fe phase 574 adiabatic reactors 516–518 – ex situ X-ray diffraction studies 574 adipic acid 697, 698, 700 – Fe catalysts 570 adsorbate 67 – high-temperature treatment 573 adsorption – in situ X-ray powder diffractometric studies – clean solids 71–74 574 –definition 67 – methanation 585 – energetics 113–126 – methane 585 – heterogeneous reactions 132–140, –N2 fixation 568 142–147, 151 – natural gas 583 – isotherms and isobars 79–88, 90–101 – nitrogen-containing compounds 568 – isotherms, kinetic principles 105–113 – oxidation 588–592 – microkinetics 147, 148, 152–154 – potassium 582 – mobility 126, 127 – potential-energy diagram 580 – ordered adlayers 74–76, 79 – primary reforming furnace 583 – physical, chemisorptions and precursor – process streams 585 states 67–70 – production 569 – surface reactions 127–129, 131, 132 – promoted iron catalyst composition 573 AES analysis see Auger electron spectroscopic – promoters 570 (AES) analysis 573 – reactor configurations 585–588 affinity coefficient 111 – reforming reactions 583 agostic interactions 49, 51 – Ru-based catalysts 570 Al2O3/CeO2/noble metal 385 – shift converters 583 algae biofuel challenge 13 – steam-reforming reactions 583 Algenol 13 – surface hydrogen 578–580 alkaline-earth oxides 430 – surface nitride 576–578 ALPO structure 384 – synthesis reactor 649 Principles and Practice of Heterogeneous Catalysis, Second Edition. Sir John M. Thomas and W. J. Thomas. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 734 Index ammonia (continued) Born model 379 – Temkin–Pyzhev description 571–573 Brønsted catalysts 42, 43 – typical arrangement, plant 584 Brønsted-acid catalysed isomerization 720 – world population 569, 570 Brønsted–Evans–Polanyi (BEP) plot 562 – X-ray photoelectron spectrum 573 Brønsted–Evans–Polanyi (BEP) relation 52, ammonia oxidation 527 101–103, 415 ammonia synthesis reactor 520 bridging hydroxyl groups 383 ammoxidation process 22 BRIMTM 232, 237 ammoxidation 22, 176, 589, 687 Brunauer classification 80 argon adsorption isotherm 703 Brunauer–Emmett–Teller (BET) isotherm aromatic alkylation 708 82, 110 artificial leaf 661, 662 Brunauer–Emmett–Teller (BET) method artificial photosynthesis systems 661 – energetic heterogeneity 297 atomic and ionic polarization 379 – fractal analysis 297 atomic force microscopy (AFM) 229, 230, – nitrogen 297 239, 240 – principle 297 atomistic studies 385, 389 – surface area 297 attenuated total reflection (ATR) IR – transformations 297 spectroscopy 189 butene isomer binding energies, ZSM-5 387 Auger electron spectroscopy (AES) 40, 177, 190, 573, 575, 576 c auto-exhaust catalysts 23, 24, 46 catalytic reactors, coupling and decoupling auto-thermal reactors (ATR) 493 489 autocatalysis 133, 134, 144 C-hexene 423, 425, 426 autothermal syngas production 492 Caltech–Swiss solar reactor 726 AVADA (advanced acetates by direct addition) Cambridge–Tubingen–London̈ (CTL) team 364 368 Atzel cell 626 capillary-microreactor 487 caprolactam 646, 697, 698 b carbenium 637, 642 Balandin volcano plot 35 carbohydrates starch and cellulose derived 7 band bending 403–406, 408 carbon nanotubes (CNT) 664, 683 batch reactors 499, 500, 501, 510–512 cascade catalytic reactions 700, 701 Belousov–Zhabotinskii (BZ) reaction 133 catalysed hydrolysis of starch 16 benzene-free synthesis, catechol 7, 8 catalyst characterization methods 174, 175 BEP plot, see Brønsted–Evans–Polanyi (BEP) catalyst deactivation plot 562 – models 455–457, 459–462 BET see Brunauer–Emmett–Teller 296 – processes 452–454 bifunctional catalysts 42, 449–451 catalyst packing 515 bimetallic catalysts 721–723 catalyst poisoning 37, 459, 460, 462 bimetallic cluster catalysts 206–209 catalysts design 719 bimetallic nanoparticles 53 catalytic cracking 18, 19, 42 bioinspired photosystems 659 – cycloparaffins 635 biomass 657 – FCC catalyst 638–640 biomass-derived carbon feedstocks 695 – fluid catalytic cracking (FCC) 634 biomass-derived polyols 8 – heavy gas oil or vacuum gas oil (HVGO) biorefineries 655 634 bismuth molybdates 688, 689, 722 – high-activity robust catalysts 634 bismuth molybdate catalysts 47, 688, 689, – petroleum refineries 635 722 – Shell middle distillate synthesis (SMDS) blue-coloured light 659 636 body-centred cubic (bcc) metals – ‘syn-gas’ 636 high-symmetry planes, 71, 72 catalytic cycle 148 Boltzmann statistics 86, 380, 401 catalytic hydrogenation 17, 507 Index 735 catalytic hydrothermal reactor (Cat-HTR) computer modelling techniques 377 706 concentration instabilities 139, 140 catalytic monolith continuous reactors 510, 513 – applications 605 continuous stirred-tank reactor (CSTR) 504, – automobile exhaust applications 609 505 – catalytic and homogeneous oxidation 611 conventional gas–liquid adsorbers 485 – catalytic combustion chamber 604 conventional transportation fuels 707 – chemical and physical effects 610, 611 Core-Shell Co-Catalysts 669 – CO formation 607 countercurrent flow 526 – combustion processes 606 cross-polarization (CP) 220 – computed temperature and concentration crude feedstocks 712 profiles 611 CSTR reactor see continuous stirred-tank – conjunction with combustion chambers reactor 505 610 Cyclar process 22 – curve-fitting techniques 608 cyclohexane–benzene interconversions 38 – elementary surface reactions 608 – exhaust-gas velocities 609 d – gaseous phase and catalytic combustion Davidson–Harrison model 523 607 Deacon process 17 – initiation reaction 607 De Donder relations 147, 154 – integral bundle, ceramic tubes 604 Debye’s equation 182 – intraphase diffusion and mass transport Debye–Waller factor 204 614 degree of rate control 147, 154 – mass-transfer coefficient 610 dehydrogenation of butane 22 – metal oxide supports 608 density functional theory (DFT) 3, 52, 102, – open-mesh wire structures 605 104, 152, 229, 302, 303, 343, 416, 417, 419 – Phang treatement 611 – Brønsted–Evans–Polanyi (BEP) relations – propane combustion 611 419 – propane oxidation 613 – macroscopic reaction rate 421 – shallow fixed-bed tubular reactor 604 – metal alloy catalysts 421 – steady-state energy balance 612 – oxygen chemisorptions, energies 420 catalytic oxidation 517 – Pareto optimal catalysts 419, 421 catalytic RNAs 31, 32 – structural schematics and coordination catalytic wall reactors 486 number 423 CatApp –undopedTiO2 surface 429 – fcc and hcp surfaces 422 desorption – Haber–Bosch process 423 – precursor state 99, 101 – Quantum Materials Informatics Project –rates 96–98 422 – statistical mechanics 98, 99 – reaction and activation energies 421 DFT, see density functional theory 302, 303 catechol 7, 8 diesel production vegetable oils 9 cellulose-to-ethanol conversion cycle 657 differential anomalous X-ray scattering chemical turbulence 146, 150 (DAXS) 280 chemisorbed species 118–122 differential tubular reactor, see tubular reactors chromatographic analysis 259, 509 502 classical stochastic diffusion theory 99 diffuse reflectance IR Fourier transform Clausius–Clapeyron equation 81, 83 spectroscopy (DRIFTS) 273 CO molecules 77, 78, 83, 84 diffusion effects 504 CO structure, Pd(100) surface 78, 79 diffusional constant 389 CoALPO-18 188, 280 diffusive flux 444 cocatalysts 669 distortionless enhancement of polarization coincidence structure 78 transfer (DEPT) 165 combined oligomerization 708 docking method 386, 387 commodity chemicals 9 donor–acceptor concentration 675 736 Index DSC, see dye-sensitized cell Escherichia coli 12 dual-function catalyst 21, 25 ε-caprolactam 697, 698 Dubinin–Kaganer–Radushkevich (DKR) ethylene catalytic polymerization 216 equation 82, 112, 113 ethylene glycol production 58 DuPont strategy 57 European hydrogen and fuel platform (HFP) dye-sensitized cell (DSC) 626, 628 679, 681 ‘Ewald construction’ 196 e exothermic adsorption 84, 85 4D electron microscopy 248, 249, 253 exothermic and endothermic reactions earth-abundant H2-evolution photocatalysts 492–494 664 exothermic catalysed reactions 501 earth-abundant O2-evolution photocatalysts exothermic gas–solid catalytic reaction 504 665 extended X-ray absorption fine structure ecofining process flow-scheme 705, 706 (EXAFS) 200–202, 204, 207, 209 Eddy diffusion coefficient 513 externally fluidized bed membrane reactor EFBMR see externally fluidized bed membrane 498, 596 reactor 498, 596 electrocatalysts 663, 664, 666, 676, 683 f electrochemical reduction of CO2 663 face-centred cubic (fcc) metals electron crystallography 245, 246 high-symmetry planes, 71 electron microscopy (EM) 240–242, Fe-based NH3 synthesis catalyst 687 244–249, 251, 253 Fe nanoparticle 683 electron spin resonance (ESR) 40, 214–216 Fermi levels 399, 400, 402 electron tomography (ET) 246, 247 Fermi–Dirac distribution function 400 electron-energy-loss spectroscopy (EELS) field-ion microscopy 127 40, 241–243, 249, 253, 275 first-order rate coefficients vs.