Algebraic Numbers with Elements of Small Height Haydar Göral
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution of Rational Points on Toric Varieties: a Multi-Height Approach
Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Arda H. Demirhan University of Illinois at Chicago March 19, 2021 Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Height Machine associates counting devices to divisor classes. ( ) ( ) geometric facts arithmetic facts , given by divisor relations given by height relations Height Machine is useful for other fields too. How to Count Rational Points? X: an algebraic variety in Pn over a number field Main Idea: We use height functions to count rational points. Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Height Machine is useful for other fields too. How to Count Rational Points? X: an algebraic variety in Pn over a number field Main Idea: We use height functions to count rational points. Height Machine associates counting devices to divisor classes. ( ) ( ) geometric facts arithmetic facts , given by divisor relations given by height relations Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach How to Count Rational Points? X: an algebraic variety in Pn over a number field Main Idea: We use height functions to count rational points. Height Machine associates counting devices to divisor classes. ( ) ( ) geometric facts arithmetic facts , given by divisor relations given by height relations Height Machine is useful for other fields too. Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Counting Function: N(U(K); B) = cardfx 2 U(K): HK (x) ≤ Bg Let U ⊆ X be a Zariski open with some rational points. -
Notices of the American Mathematical Society
OF THE AMERICAN MATHEMATICAL SOCIETY ISSU! NO. 116 OF THE AMERICAN MATHEMATICAL SOCIETY Edited by Everett Pitcher and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings ••••••••••••••••••••••••••••••••••.• 874 Program of the Meeting in Cambridge, Massachusetts •••.•.••••..•• 875 Abstracts for the Meeting- Pages 947-953 PRELIMINARY ANNOUNCEMENTS OF MEETINGS •••••••••••••••••.•• 878 AN APPEAL FOR PRESERVATION OF ARCHIVAL MATERIALS .•••••••••• 888 CAN MATHEMATICS BE SAVED? ••••••••••.••••••••..•.•••••••.. 89 0 DOCTORATES CONFERRED IN 1968-1969 ••••••••••••••.••••••.•••• 895 VISITING MATHEMATICIANS .•••••••••••••••••••••••••..•••••.. 925 ANNUAL SALARY SURVEY ••••••••••••.••••.••••.•.•.••••••.•• 933 PERSONAL ITEMS •••••••••••••••••••••••••••••...•••••••••• 936 MEMORANDA TO MEMBERS Audio Recordings of Mathematical Lectures ••••••••..•••••.•••.• 940 Travel Grants. International Congress of Mathematicians ••..•.•••••.• 940 Symposia Information Center ••••.•• o o • o ••••• o o •••• 0 •••••••• 940 Colloquium Lectures •••••••••••••••••••••••.• 0 ••••••••••• 941 Mathematical Sciences E'mployment Register .•.••••••..•. o • o ••••• 941 Retired Mathematicians ••••• 0 •••••••• 0 ••••••••••••••••• 0 •• 942 MOS Reprints .•••••• o •• o ••••••••••••••••••••••• o •••••• 942 NEWS ITEMS AND ANNOUNCEMENTS •••••. o •••••••••••••••• 877, 932, 943 ABSTRACTS PRESENTED TO THE SOCIETY •••••.••••.•.•.••..•..•• 947 RESERVATION FORM. o •••••••••••••••••••••••••••••••••••••• 1000 MEETINGS Calendar of Meetings NOTE: This Calendar lists all of the meetings which have -
Introduction to Mahler Measure Universidad De Buenos Aires, Argentina July 23Rd, 2003 Matilde N
Introduction to Mahler Measure Universidad de Buenos Aires, Argentina July 23rd, 2003 Matilde N. Lal´ın{ University of Texas at Austin 1 1. Definition of Mahler Measure and Lehmer's question Looking for large primes, Pierce [18] proposed the following in 1918: Consider P 2 Z[x] monic, and write Y P (x) = (x − αi) i then, we look at Y n ∆n = (αi − 1) i Since the αi are integers and by applying Galois theory, it is easy to see that ∆n 2 Z. n Note that if P = x − 2, we get the sequence ∆n = 2 − 1. The idea is to look for primes among the factors of ∆n. The prime divisors of such integers must satify some congruence conditions that are quite restrictive, hence they are easier to factorize than a randomly given number. Moreover, one can show that ∆mj∆n if mjn. Then we may look at the numbers ∆ p p prime ∆1 In order to minimize the number of trial divisions, the sequence ∆n should grow slowly. Lehmer [15] studied ∆n+1 , observed that ∆n jαn+1 − 1j jαj if jαj > 1 lim = n!1 jαn − 1j 1 if jαj < 1 and suggested the following definition: Definition 1 Given P 2 C[x], such that Y P (x) = a (x − αi) i define the Mahler measure 2 of P as Y M(P ) = jaj maxf1; jαijg (1) i The logarithmic Mahler measure is defined as X + m(P ) = log M(P ) = log jaj + log jαij (2) i [email protected] { http://www.ma.utexas.edu/users/mlalin 2The name Mahler came later after the person who successfully extended this definition to the several- variable case. -
Quartic Salem Numbers Which Are Mahler Measures of Non-Reciprocal 2-Pisot Numbers Tome 32, No 3 (2020), P
Toufik ZAÏMI Quartic Salem numbers which are Mahler measures of non-reciprocal 2-Pisot numbers Tome 32, no 3 (2020), p. 877-889. <http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_3_877_0> © Société Arithmétique de Bordeaux, 2020, tous droits réservés. L’accès aux articles de la revue « Journal de Théorie des Nom- bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb. centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est con- stitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.centre-mersenne.org/ Journal de Théorie des Nombres de Bordeaux 32 (2020), 877–889 Quartic Salem numbers which are Mahler measures of non-reciprocal 2-Pisot numbers par Toufik ZAÏMI Résumé. Motivé par une question de M. J. Bertin, on obtient des paramé- trisations des polynômes minimaux des nombres de Salem quartiques, disons α, qui sont des mesures de Mahler des 2 -nombres de Pisot non-réciproques. Cela nous permet de déterminer de tels nombres α, de trace donnée, et de déduire que pour tout entier naturel t (resp. t ≥ 2), il y a un nombre de Salem quartique, de trace t, qui est (resp. qui n’est pas) une mesure de Mahler d’un 2 -nombre de Pisot non-réciproque. -
Product of Invariant Types Modulo Domination–Equivalence
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by White Rose Research Online Archive for Mathematical Logic https://doi.org/10.1007/s00153-019-00676-9 Mathematical Logic Product of invariant types modulo domination–equivalence Rosario Mennuni1 Received: 31 October 2018 / Accepted: 19 April 2019 © The Author(s) 2019 Abstract We investigate the interaction between the product of invariant types and domination– equivalence. We present a theory where the latter is not a congruence with respect to the former, provide sufficient conditions for it to be, and study the resulting quotient when it is. Keywords Domination · Domination–equivalence · Equidominance · Product of invariant types Mathematics Subject Classification 03C45 To a sufficiently saturated model of a first-order theory one can associate a semigroup, that of global invariant types with the tensor product ⊗. This can be endowed with two equivalence relations, called domination–equivalence and equidominance.This paper studies the resulting quotients, starting from sufficient conditions for ⊗ to be well-defined on them. We show, correcting a remark in [3], that this need not be always the case. Let S(U) be the space of types in any finite number of variables over a model U of a first-order theory that is κ-saturated and κ-strongly homogeneous for some large κ. For any set A ⊆ U, one has a natural action on S(U) by the group Aut(U/A) of automorphisms of U that fix A pointwise. The space Sinv(U) of global invariant types consists of those elements of S(U) which, for some small A, are fixed points of the action Aut(U/A) S(U). -
Stable Theories
Sh:1 STABLE THEORIES BY S. SHELAH* ABSTRACT We study Kr(~,) = sup {I S(A)] : ]A[ < ~,) and extend some results for totally transcendental theroies to the case of stable theories. We then inves- tigate categoricity of elementary and pseudo-elementary classes. 0. Introduction In this article we shall generalize Morley's theorems in [2] to more general languages. In Section 1 we define our notations. In Theorems 2.1, 2.2. we in essence prove the following theorem: every first- order theory T of arbitrary infinite cardinality satisfies one of the possibilities: 1) for all Z, I A] -- z ~ I S(A)[ -<__z + 2 ITI, (where S(A) is the set of complete consistent types over a subset A of a model of T). 2) for all •, I AI--x I S(A I =<x ~T~, and there exists A such that I AI--z, IS(A) I _>- z "o. 3) for all Z there exists A, such that [A[ = Z, IS(A)] > IAI. Theories which satisfy 1 or 2 are called stable and are similar in some respects to totally transcendental theories. In the rest of Section 2 we define a generalization of Morley's rank of transcendence, and prove some theorems about it. Theorems whose proofs are similar to the proofs of the analogous theorems in Morley [2], are not proven here, and instead the number of the analogous theorem in Morley [2] is mentioned. In Section 3, theorems about the existence of sets of indiscernibles and prime models on sets are proved. * This paper is a part of the author's doctoral dissertation written at the Hebrew University of Jerusalem, under the kind guidance of Profeossr M. -
Connes on the Role of Hyperreals in Mathematics
Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V. -
Heights, Algebraic Dynamics and Berkovich Analytic Spaces
HEIGHTS, ALGEBRAIC DYNAMICS AND BERKOVICH ANALYTIC SPACES JORGE PINEIRO Abstract. The present paper is an exposition on heights and their importance in the modern study of algebraic dynamics. We will explain the idea of canonical height and its surprising relation to algebraic dynamics, invariant measures, arithmetic intersection theory, equidistribution and p-adic analytic geometry. 1. Introduction In many situations, solving mathematical problems involves study the solution set of a system of polynomial equations. The language of algebraic varieties is developed for that purpose. An algebraic variety is a topological locally ringed space whose underlying topological space \behave locally like" the zero set of a system of polynomials in an a±ne space. A formal de¯nition can be found for example in Chapter 1 of [18]. A projective variety is an algebraic variety that can be embedded into some projective space. Many number theoretic questions are nat- urally expressed as diophantine problems. Suppose that the algebraic variety X is de¯ned over the number ¯eld F . An algebraic dynamical system ' : X ! X is a ¯nite map from the algebraic variety X to itself. One of the tools to study algebraic dynamics over number ¯elds is the de¯nition of height functions. A (canonical) height function as- ^ ¹ sociated to ' is a function h' : X(F ) ! R, that attempts to compute the complexity of the point P 2 X(F¹) relative to the map '. For in- stance the points of ¯nite forward orbits for ' will be exactly the points ^ of height h'(P ) = 0. The notion of height can be also generalized to subvarieties Y ½ X, still measuring the behavior under iteration. -
On the Behavior of Mahler's Measure Under Iteration 1
ON THE BEHAVIOR OF MAHLER'S MEASURE UNDER ITERATION PAUL FILI, LUKAS POTTMEYER, AND MINGMING ZHANG Abstract. For an algebraic number α we denote by M(α) the Mahler measure of α. As M(α) is again an algebraic number (indeed, an algebraic integer), M(·) is a self-map on Q, and therefore defines a dynamical system. The orbit size of α, denoted #OM (α), is the cardinality of the forward orbit of α under M. We prove that for every degree at least 3 and every non-unit norm, there exist algebraic numbers of every orbit size. We then prove that for algebraic units of degree 4, the orbit size must be 1, 2, or infinity. We also show that there exist algebraic units of larger degree with arbitrarily large but finite orbit size. 1. Introduction The Mahler measure of an algebraic number α with minimal polynomial f(x) = n anx + ··· + a0 2 Z[x] is defined as: n n Y Y M(α) = janj maxf1; jαijg = ±an αi: i=1 i=1 jαij>1 Qn where f(x) = an i=1(x − αi) 2 C[x]. It is clear that M(α) ≥ 1 is a real algebraic integer, and it follows from Kronecker's theorem that M(α) = 1 if and only if α is a root of unity. Moreover, we will freely use the facts that M(α) = M(β) whenever α and β have the same minimal polynomial, and that M(α) = M(α−1). D.H. Lehmer [10] famously asked in 1933 if the Mahler measure for an algebraic number which is not a root of unity can be arbitrarily close to 1. -
The Smallest Perron Numbers 1
MATHEMATICS OF COMPUTATION Volume 79, Number 272, October 2010, Pages 2387–2394 S 0025-5718(10)02345-8 Article electronically published on April 26, 2010 THE SMALLEST PERRON NUMBERS QIANG WU Abstract. A Perron number is a real algebraic integer α of degree d ≥ 2, whose conjugates are αi, such that α>max2≤i≤d |αi|. In this paper we com- pute the smallest Perron numbers of degree d ≤ 24 and verify that they all satisfy the Lind-Boyd conjecture. Moreover, the smallest Perron numbers of degree 17 and 23 give the smallest house for these degrees. The computa- tions use a family of explicit auxiliary functions. These functions depend on generalizations of the integer transfinite diameter of some compact sets in C 1. Introduction Let α be an algebraic integer of degree d, whose conjugates are α1 = α, α2,...,αd and d d−1 P = X + b1X + ···+ bd−1X + bd, its minimal polynomial. A Perron number, which was defined by Lind [LN1], is a real algebraic integer α of degree d ≥ 2 such that α > max2≤i≤d |αi|.Any Pisot number or Salem number is a Perron number. From the Perron-Frobenius theorem, if A is a nonnegative integral matrix which is aperiodic, i.e. some power of A has strictly positive entries, then its spectral radius α is a Perron number. Lind has proved the converse, that is to say, if α is a Perron number, then there is a nonnegative aperiodic integral matrix whose spectral radius is α.Lind[LN2] has investigated the arithmetic of the Perron numbers. -
The Mahler Measure of Algebraic Numbers: a Survey
THE MAHLER MEASURE OF ALGEBRAIC NUMBERS: A SURVEY CHRIS SMYTH Abstract. A survey of results for Mahler measure of algebraic numbers, and one-variable polynomials with integer coefficients is presented. Re- lated results on the maximum modulus of the conjugates (`house') of an algebraic integer are also discussed. Some generalisations are given too, though not to Mahler measure of polynomials in more than one variable. 1. Introduction d d Let P (x) = a0z + + ad = a0 i=1(z αi) be a nonconstant polynomial with (at first) complex· · ·coefficients. Then,−following Mahler [101] its Mahler measure is defined to be Q 1 M(P ) := exp log P (e2πit) dt ; (1) j j Z0 the geometric mean of P (z) for z on the unit circle. However M(P ) had appeared earlier in a papj er ofj Lehmer [94], in an alternative form M(P ) = a α : (2) j 0j j ij jαYi|≥1 The equivalence of the two definitions follows immediately from Jensen's for- mula [88] 1 log e2πit α dt = log α : j − j + j j Z0 Here log+ x denotes max(0; log x). If a0 1, then clearly M(P ) 1. This is the case when P has integer coefficienj jts;≥ we assume henceforth≥that P is of this form. Then, from a result of Kronecker [90], M(P ) = 1 occurs only if P is a power of z times a cyclotomic polynomial. In [101] Mahler called M(P ) the measure of the polynomial P , apparently to distinguish it from its (na¨ıve) height. This was first referred to as Mahler's measure by Waldschmidt [165, p.21] in 1979 (`mesure de Mahler'), and soon afterwards by Boyd [33] and Durand [75], in the sense of \the function that Mahler called `measure' ", rather than as a name. -
Self-Similarity in the Foundations
Self-similarity in the Foundations Paul K. Gorbow Thesis submitted for the degree of Ph.D. in Logic, defended on June 14, 2018. Supervisors: Ali Enayat (primary) Peter LeFanu Lumsdaine (secondary) Zachiri McKenzie (secondary) University of Gothenburg Department of Philosophy, Linguistics, and Theory of Science Box 200, 405 30 GOTEBORG,¨ Sweden arXiv:1806.11310v1 [math.LO] 29 Jun 2018 2 Contents 1 Introduction 5 1.1 Introductiontoageneralaudience . ..... 5 1.2 Introduction for logicians . .. 7 2 Tour of the theories considered 11 2.1 PowerKripke-Plateksettheory . .... 11 2.2 Stratifiedsettheory ................................ .. 13 2.3 Categorical semantics and algebraic set theory . ....... 17 3 Motivation 19 3.1 Motivation behind research on embeddings between models of set theory. 19 3.2 Motivation behind stratified algebraic set theory . ...... 20 4 Logic, set theory and non-standard models 23 4.1 Basiclogicandmodeltheory ............................ 23 4.2 Ordertheoryandcategorytheory. ...... 26 4.3 PowerKripke-Plateksettheory . .... 28 4.4 First-order logic and partial satisfaction relations internal to KPP ........ 32 4.5 Zermelo-Fraenkel set theory and G¨odel-Bernays class theory............ 36 4.6 Non-standardmodelsofsettheory . ..... 38 5 Embeddings between models of set theory 47 5.1 Iterated ultrapowers with special self-embeddings . ......... 47 5.2 Embeddingsbetweenmodelsofsettheory . ..... 57 5.3 Characterizations.................................. .. 66 6 Stratified set theory and categorical semantics 73 6.1 Stratifiedsettheoryandclasstheory . ...... 73 6.2 Categoricalsemantics ............................... .. 77 7 Stratified algebraic set theory 85 7.1 Stratifiedcategoriesofclasses . ..... 85 7.2 Interpretation of the Set-theories in the Cat-theories ................ 90 7.3 ThesubtoposofstronglyCantorianobjects . ....... 99 8 Where to go from here? 103 8.1 Category theoretic approach to embeddings between models of settheory .