Low-Velocity Matter Wave Source for Atom Interferometry Produced By

Total Page:16

File Type:pdf, Size:1020Kb

Low-Velocity Matter Wave Source for Atom Interferometry Produced By AN ABSTRACT OF THE THESIS OF Shannon K. Mayer for the degree of Doctor of Philosophy in Physics presented on January 22, 1997. Title: Low-Velocity Matter-Wave Source for Atom Interferometry Produced by Zeeman-Tuned Laser Cooling and Magneto-Optic Trapping. Redacted for Privacy Abstract Approved: David H. McIntyre A continuous, low-velocity, nearly monochromatic atomic beam is created using laser cooling and two-dimensional magneto-optic trapping. Rubidium atoms from an effusive oven are slowed and cooled using Zeeman-tuned slowing. The scattering force from a counter-propagating, frequency-stabilized diode laser beam is used to decelerate the thermal beam of atoms to a velocity of 20 m/s. A spatially varying magnetic field is used to Zeeman shift the resonance frequency of the atom to compensate for the changing Doppler shift, thereby keeping the slowing atoms resonant with the fixed frequency laser. This slowing process also cools the beam of atoms to a temperature of a few Kelvin. The slow beam of atoms is loaded into a two-dimensional magneto-optic trap or atomic funnel. The atoms are trapped along the axis of the funnel and experience a molasses- type damping force in all three spatial dimensions. By frequency shifting the laser beams used to make the trap, the atoms are ejected at a controllable velocity. The continuous matter-wave source has a controllable beam velocity in the range of 2 to 15 m/s, longitudinal and transverse temperatures of approximately 500 and a flux of 3.4 x109 atoms/s. At 10 m/s, the de Broglie wavelength of the beam is 0.5 nm. The spatial profile of the atomic beam was characterized 30 cm from the exit of the atomic funnel using a surface ionization detector. The low-velocity atomic beam is an ideal source for atom interferometry and a variety of applications in the field of atom optics. © Copyright by Shannon K. Mayer January 22, 1997 All Rights Reserved Low-Velocity Matter-Wave Source for Atom Interferometry Produced by Zeeman-Tuned Laser Cooling and Magneto-Optic Trapping by Shannon K. Mayer A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented January 22, 1997 Commencement June 1997 Doctor of Philosophy thesis of Shannon K. Mayer presented on January 22, 1997 APPROVED: Redacted for Privacy Major Professor, Representing P ysics Redacted for Privacy Chair of Department of Physics Redacted for Privacy Dean of Gradua chool I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted for Privacy Shannon K. Mayer, AZ7­ Acknowledgments I would like to thank my advisor, Dr. David McIntyre, for his guidance during this project. His knowledge, thoroughness, and resourcefulness have been a tremendous asset. He has taught me a great number of skills that helped me to become a better scientist. By his example, I have learned the importance of asking questions and have developed a healthy balance between thinking through a problem and simply getting in the lab and giving it a try. He has also modeled a number of attributes which will help me to become a better teacher. The patience he exhibits in working with students and his availability for questions are traits I hope to emulate. I am very grateful to have had the opportunity to learn from him. I would also like to acknowledge the assistance of many people who contributed to the work in the laboratory during my time at OSU. Thanks to Nancy Silva and Tom Swanson for leading the way on the system; I benefited a great deal from our time working together on the project. Thanks to Mark Shroyer for building the solenoid for Zeeman-tuned slowing. Kerry Browne has been a great help in assisting with a variety of projects these last several months. John Archibald's fine machining skills were also a great asset to the group. I would like to thank my husband, Steve, for his faithful encouragement as we have pursued this dream together. Thanks also to the friends who have come alongside in support of this endeavor. The friendship, encouragement, and impeccably timed humor have sustained me through this journey. Special thanks to Mike and Jennifer Jacobson, Bob and Beth Mumford, Bill Greenwood, Heidi Pattee, Corinne Manogue and the community at Logos House and Valley Christian Center. I would also like to thank my family for their support through the years. Finally, I honor the Lord, Jesus Christ; the One who places in our hearts the desire to ask questions and allows us to discover, in some small measure, the working of the world He created. Financial support has been provided by the Office of Naval Research and Oregon State University. Table of Contents Page Chapter 1. Introduction 1 1.1 Atom Interferometry: Historical Background and Applications 2 1.2 Overview of the Experiment 5 1.3 Thesis Outline 7 Chapter 2. Introduction to Atomic Physics: Relevant Properties of Rubidium 9 2.1 Overview 9 2.2 Atomic Energy Levels 9 2.3 Absorption and Emission Spectra 14 2.4 Zeeman Shifted Energy Levels 15 2.4.1 Zeeman Splitting in the Low Field Limit 18 2.4.2 Zeeman Splitting in the High Field Limit 19 2.4.3 Zeeman Splitting for General Fields 20 Chapter 3. Laser Manipulation of Atoms 26 3.1 Laser Cooling Theory 26 3.1.1 Momentum Transfer via Absorption and Spontaneous Emission of Photons 26 3.1.2 Laser Cooling Methods 29 3.1.3 Optical Pumping: Generating a Two-Level Cycling Transition 37 3.1.4 Transverse Heating 42 3.2 Optical Molasses and Magneto-optic Trapping Theory 42 3.2.1 Optical Molasses 42 3.2.2 The Magneto-Optic Trap 46 Chapter 4. Zeeman-Tuned Slowing: Implementation 50 4.1 Solenoid Design Criteria 50 4.2 The Solenoid for Zeeman-Tuned Slowing 53 4.2.1 Mechanical Design 54 4.2.2 Solenoid Coil Configuration 54 4.2.3 Solenoid Magnetic Field 56 Table of Contents (continued) Page 4.3 Theoretical Solenoid Performance 62 4.3.1 Analytical Model of Solenoid Performance 63 4.3.2 Theoretical Results from the Model 65 4.3.3 Spontaneous Emission and Transverse Heating 76 Chapter 5. System Description and Operation 78 5.1 System Overview 78 5.2 The Atomic Beam Machine 78 5.2.1 The Vacuum System 78 5.2.2 The Rubidium Oven 81 5.3 Lasers and Optics 87 5.3.1 Diode Laser Operation 87 5.3.2 Grating Feedback Stabilized Laser Diode 91 5.3.3 Frequency Calibration and Stabilization 93 5.3.4 Optical Layout and Laser Characteristics 99 5.4 The Atomic Funnel 102 5.5 The Surface Ionization Detector 104 5.5.1 Ionizing the Neutral Atomic Beam 105 5.5.2 Microchannel Plate Amplification 105 5.5.3 Detector Design and Operation 106 Chapter 6. Experimental Results: The Zeeman Slower 109 6.1 Optimizing System Parameters 111 6.2 State Preparation 112 6.2.1 The Function of the Cooling Laser in State Preparation 112 6.2.2 The Function of the Re-Pump Laser in State Preparation 114 6.3 Slowing Atoms Without Doppler Shift Compensation 115 6.4 Experimental Results: Zeeman Tuned Slowing 117 6.5 Comparison with Chirped Cooling 123 6.6 Isotope Comparison 124 Table of Contents (continued) Page Chapter 7. Experimental Results: Characterization of the Low-Velocity Matter-Wave Source 126 7.1 Resonance Fluorescence: Estimating the Atomic Funnel Population 126 7.2 Time-of-Flight Analysis: Velocity and Temperature Measurements of the Atomic Beam 128 7.3 Surface Ionization Detection: Spatial Characteristics of the Atomic Beam 131 7.3.1 Detector Pulse Characteristics 132 7.3.2 Pulse Counting 133 7.3.3 Monitoring DC Current 135 7.3.4 Ionization Detector Efficiency 136 7.3.5 Predicted Spatial Distribution of the Atomic Beam 137 7.3.6 Measured Spatial Distribution of the Atomic Beam 141 7.4 Demonstration of Magneto-Optical Deflection of a Low-Velocity Atomic Beam 147 7.5 Feasibility Study: Diffraction of the Low-Velocity Atomic Beam by a Transmission Grating 153 Chapter 8: Conclusions and Future Research 156 Bibliography 158 Appendix: Maple Worksheet: Zeeman Shifted Energy Levels of the 5S112 and 5P312 States of Rubidium 167 List of Figures Figure Page 1.1 Three-grating Bonse-Hart interferometer for atom interferometry. 7 2.1 Fine structure and hyperfine structure splitting of the ground and first excited state energy levels of 85Rb. 11 2.2 Energy level diagram for the ground and 5P312 state of 85Rb and 87Rb. 13 2.3 Measured Doppler-broadened absorption spectra for the 5S112 to 5P312 transition in rubidium. 16 2.4 Calculated Doppler-broadened absorption spectra for the 5S112 to 5P312 transition in rubidium. 16 2.5a Zeeman shifted energy levels of the 5S112 and 5P312 states of 85Rb. 22 2.5b Zeeman shifted energy levels of the 5S112 and 5P312 states of 85Rb (expanded view). 23 2.6a Zeeman shifted energy levels of the 5S112 and 5P312 states of 87Rb. 24 2.6b Zeeman shifted energy levels of the 5S112 and 5P312 states of 87Rb (expanded view). 25 3.1 Momentum transfer via photon absorption-emission. 27 3.2 Zeeman shift of 85Rb energy levels relevant to Zeeman-tuned cooling. 32 3.3 Theoretical magnetic field profile for a and a + Zeeman-tuned cooling. 34 3.4 Zeeman shift in transition frequency for the rc and a + transitions relative to the a cycling transition.
Recommended publications
  • Quantum Reflection in Two Dimensions
    Quantum Reflection in Two Dimensions Emanuele Galiffi Department of Physics Imperial College London - University of Heidelberg This dissertation is submitted for the degree of MSci Physics Imperial College London July 2015 University of Heidelberg To my family: Francesco, Mariangela and Davide. Declaration This project is embedded in a larger project with a long-term perspective in the numerical study of quantum reflection (QR) in atom-surface scattering problems. The project leaders are Sandro Wimberger (University of Parma, University of Heidelberg) and Dr. Maarten DeKieviet (University of Heidelberg). The first project, which was carried out by B. Herwerth, concerned the development and implementation of numerical time-dependent methods used in 1D studies. These found an application in the study of QR off vibrating surfaces. In the second project, which was carried out by Sünderhauf, different approaches to 2D wavepacket propagation were considered from a general point of view. The computational costs associated to the matrix decomposition of the 2D Hamiltonian matrix were estimated in that context. Furthermore, comparisons were drawn between quantum and classical reflection, and methods for isolating the two effects were investigated. Moreover, part of the 1D Fortran code written by Herwerth was translated by Sünderhauf in C++. I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.
    [Show full text]
  • Quantum Reflection from the Casimir-Polder Potential
    THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : “Physique en Île-de-France” réalisée au Laboratoire Kastler-Brossel présentée par Gabriel DUFOUR pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Réflexion quantique sur le potentiel de Casimir-Polder – Quantum reflection from the Casimir-Polder potential soutenue le 20 novembre 2015 devant le jury composé de M Andreas Buchleitner Rapporteur M David Guéry-Odelin Rapporteur Mme Marie-Christine Angonin Examinatrice M Olivier Dulieu Examinateur M Valery Nesvizhevsky Examinateur Mme Astrid Lambrecht Directrice de thèse i À la mémoire de mes grands-pères, Jean Dufour et Michel Durin ii Quand j’ai poussé la porte du Laboratoire Kastler Brossel en novembre 2011, je re- venais d’un mois de voyage à vélo sur les routes et chemins d’Italie. Astrid Lambrecht et Serge Reynaud m’ont convaincu de me lancer dans une nouvelle aventure, avec son lot d’ascensions ardues, de petites victoires, de problèmes techniques et de découvertes grisantes. Astrid et Serge m’ont accompagné sans relâche au cours du stage et de la thèse qui ont suivi. Je les remercie chaleureusement pour leur gentillesse et leur patience, leurs mots d’encouragement et les nombreuses discussions passionnantes que nous avons eues. Marie-Pascale Gorza, Romain Guérout, Manuel Donaire et Axel Maury ont été mes compagnons de route au sein de l’équipe “fluctuations quantiques et relativité”. Leurs conversations stimulantes et animées ont égayé bien des austères journées de travail. J’ai aussi partagé de très bons moments avec mes collègues et amis du laboratoire et d’au delà, que ce soit dans les courants d’air de la cantine, sous le soleil des arènes ou dans l’ambiance chaleureuse d’une cafétéria.
    [Show full text]
  • Cooling and Trapping Neutral Atoms
    Chapter 34. Cooling and Trapping Neutral Atoms Cooling and Trapping Neutral Atoms RLE Groups Atomic, Molecular and Optical Physics Group; MIT-Harvard Center for Ultracold Atoms Academic and Research Staff Professor Wolfgang Ketterle, Professor David E. Pritchard, Prof. Martin W. Zwierlein Visiting Scientists and Research Affiliates Yingmei Liu, Luis Marcassa, Yong-Il Shin, David Weld Graduate Students Micah Boyd, Jit-Kee Chin, Caleb Cristensen, Gyu-Boong Jo, David Hucul, Aviv Keshet, Ye-ryoung Lee, Patrick Medley, Daniel Miller, Jongchul Mun, Tom Pasquini, Andre, Schirotzek, Christian Schunck Undergraduate Students Tony Kim, Widagdo (Martin) Setiawan, Peter Zarth Support Staff Joanna Keseberg Sponsors: National Science Foundation Office of Naval Research DARPA Overview Most of our results in the past year reflect our focus on strongly interacting quantum gases. This has been pursued with bosons in optical lattices, and in our studies of fermionic superfluidity. A highlight of the past year was the characterization of superfluid fermion systems with population imbalance and in an optical lattice. Major progress was also achieved in our program on atom interferometry where we study interference of two condensates on an atom chip. 1. Long Phase Coherence Time and Number Squeezing of two Bose-Einstein Condensates on an Atom Chip Precision measurements in atomic physics are usually done at low atomic densities to avoid collisional shifts and dephasing. This applies to both atomic clocks and atom interferometers. At high density, the atomic interaction energy results in so-called clock shifts and leads to phase diffusion in Bose-Einstein condensates. Operating an atom interferometer at low density severely limits the flux and therefore the achievable signal-to-noise ratio.
    [Show full text]
  • Atomic Motion in Optical Potentials
    ATOMIC MOTION IN OPTICAL POTENTIALS by MARTIN CHRISTIAN FISCHER, M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May 2001 Copyright by Martin Christian Fischer 2001 ATOMIC MOTION IN OPTICAL POTENTIALS APPROVED BY DISSERTATION COMMITTEE: Supervisor: iv To my family for their never-ending love and support. vi Acknowledgements I am grateful to have had the opportunity to spend most of my graduate career in Mark Raizen’s laboratory at The University of Texas at Austin. Mark is an excellent physicist and is always willing to share his knowledge with his group. He also shares his enthusiasm for physics and his creativity with the people around him. His fairness as a supervisor is equaled by his compassion for his students. I have tremendously enjoyed the time working with him and hope to have picked up some of his physical intuition. Cyrus Bharucha and Kirk Madison showed me the ropes in the lab and never ceased to offer help and support wherever needed. I enjoyed Cyrus’ company and friendship from the summers in Austin to the winters on the ski slopes of Colorado and Switzerland. With Kirk I spent many days and nights hunting for signals and discussing all sorts of topics. Kirk proved his skills not only in the lab but also on the soccer field. He is an excellent teammate and a great friend. Braulio Guti´errez joined the sodium and the soccer teams a couple of years later and has performed great in both.
    [Show full text]
  • Guiding of Waves Between Absorbing Walls
    Journal of Modern Physics, 2012, 3, 553-560 http://dx.doi.org/10.4236/jmp.2012.37076 Published Online July 2012 (http://www.SciRP.org/journal/jmp) Guiding of Waves between Absorbing Walls Dmitrii Kouznetsov, Makoto Morinaga Institute for Laser Science, University of Electro-Communications, Tokyo, Japan Email: {dima, morinaga}@ils.uec.ac.jp Received May 5, 2012; revised June 9, 2012; accepted June 29, 2012 ABSTRACT Guiding of waves between parallel absorbing walls is considered. The principal mode is constructed; its absorption is estimated. The agreement with previous results about reflection of waves from absorbing walls is discussed. Roughly, the effective absorption of the principal mode is proportional the minus third power of the distance between walls, mi- nus 1.5d power of the wavenumber and minus 0.5d power of the local absorption of the wave in the wall. This estimate is suggested as hint for the design of the atomic waveguides, and also as tool for optimization of attenuation of the am- plified spontaneous emission (and suppression of parasitic oscillations) in high power lasers. Keywords: Zeno Effect; Atom Optics; Waveguides; Suppression of Amplified Spontaneous Emission 1. Introduction The frequency of decay is denotes with . The special system of units is used in such a way that =1 and the The consideration of reflection of waves from absorbing energy of the particle in vacuum is assumed to be square walls had been stimulated by the experiments with ridged of its wavenumber. mirrors [1] and their interpretation in terms of the Zeno In Section 3, the special case of uniform absorption is effect [2,3].
    [Show full text]
  • Retardation Effects on Quantum Reflection from An
    PHYSICAL REVIEW A VOLUME 58, NUMBER 5 NOVEMBER 1998 Retardation effects on quantum reflection from an evanescent-wave atomic mirror R. Coˆte´ and B. Segev* Institute for Theoretical Atomic and Molecular Physics (ITAMP), Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 M. G. Raizen Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 ~Received 19 May 1998! We calculate the reflection probability for ultracold sodium atoms incident on an evanescent-wave atomic mirror. For low enough energies the reflection probability curves exhibit quantum effects that are sensitive to the long-range part of the potential and can therefore be used to resolve Casimir retardation effects. We also explore the accuracy of model potentials approximating the exact atom-wall effective potential. @S1050-2947~98!08811-8# PACS number~s!: 42.50.Vk, 34.20.2b I. INTRODUCTION it, the phase of the reflected laser beam. This phase shift can be used to detect the passage of a cloud of atoms without An electromagnetic mirror for neutral atoms was first sug- destroying the coherence of the reflection @8#. Experiments gested by Cook and Hill in 1982 @1#. Their idea was to use with a time-dependent mirror, in which the potential changes the radiation force of an evanescent-electromagnetic wave rapidly and continuously by controlled modulation of the outside a dielectric surface to repel slow atoms. Such an intensity of the laser light, were performed @9#. The use of evanescent wave is formed when light undergoes total inter- evanescent-light mirrors to build a surface trap was recently nal reflection at the dielectric-vacuum interface.
    [Show full text]
  • Quantum Reflection of a Cold Antihydrogen Wave Packet Pierre-Philippe Crépin
    Quantum reflection of a cold antihydrogen wave packet Pierre-Philippe Crépin To cite this version: Pierre-Philippe Crépin. Quantum reflection of a cold antihydrogen wave packet. Physics [physics]. Sorbonne Universites, UPMC University of Paris 6, 2019. English. tel-02155141 HAL Id: tel-02155141 https://hal.archives-ouvertes.fr/tel-02155141 Submitted on 13 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École doctorale : "Physique en Île-de-France" Doctorat de Sorbonne Universités THÈSE pour obtenir le grade de docteur délivré par Sorbonne Universités réalisée au Laboratoire Kastler-Brossel présentée et soutenue publiquement par Pierre-Philippe Crépin le 3 juin 2019 Réflexion quantique d’un paquet d’onde d’antihydrogène refroidi —— Quantum reflection of a cold antihydrogen wave packet devant le jury composé de M Daniel Bloch Rapporteur M David Guéry-Odelin Rapporteur Mme Marie-Christine Angonin Examinatrice Mme Mathilde Fouché Examinatrice M Valery Nesvizhevsky Examinateur M Serge Reynaud Directeur de thèse M Michael Benzaquen Invité i ii « Dans notre connaissance des choses de l’Univers (qu’elles soient mathématiques ou autres), le pouvoir rénovateur en nous n’est autre que l’innocence. C’est l’innocence ori- ginelle que nous avons tous reçue en par- tage à notre naissance et qui repose en cha- cun de nous, objet souvent de notre mépris, et de nos peurs les plus secrètes.
    [Show full text]
  • New Journal of Physics the Open–Access Journal for Physics
    New Journal of Physics The open–access journal for physics Reflection of a particle from a quantum measurement Jonathan B Mackrory1, Kurt Jacobs2 and Daniel A Steck1,3 1 Department of Physics and Oregon Center for Optics, 1274 University of Oregon, Eugene, OR 97403-1274, USA 2 Department of Physics, University of Massachusetts at Boston, 100 Morrissey Blvd, Boston, MA 02125, USA E-mail: [email protected] New Journal of Physics 12 (2010) 113023 (25pp) Received 24 July 2010 Published 11 November 2010 Online at http://www.njp.org/ doi:10.1088/1367-2630/12/11/113023 Abstract. We present a generalization of continuous position measurements that accounts for a spatially inhomogeneous measurement strength. This describes many real measurement scenarios, in which the rate at which information is extracted about position has itself a spatial profile, and includes measurements that detect whether a particle has crossed from one region into another. We show that such measurements can be described, in their averaged behavior, as stochastically fluctuating potentials of vanishing time average. Reasonable constraints restrict the form of the measurement to have degenerate outcomes, which tend to drive the system to spatial superposition states. We present the results of quantum-trajectory simulations for measurements with a step-function profile (a ‘which-way’ measurement) and a Gaussian profile. We find that the particle can coherently reflect from the measurement region in both cases, despite the stochastic nature of the measurement back-action. In addition, we explore the connection to the quantum Zeno effect, where we find that the reflection probability tends to unity as the measurement strength increases.
    [Show full text]
  • Quantum Reflection of Bose-Einstein Condensates Thomas A. Pasquini
    Quantum Reflection of Bose-Einstein Condensates by Thomas A. Pasquini B.A. Physics Dartmouth College, 2000 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2007 c Massachusetts Institute of Technology 2007. All rights reserved. Author............................................. ............................... Department of Physics August 21, 2007 Certified by......................................... ............................... Wolfgang Ketterle John D. MacAurthur Professor of Physics Thesis Supervisor Certified by......................................... ............................... David E. Pritchard Cecil and Ida Green Professor of Physics Thesis Supervisor Accepted by......................................... .............................. Thomas J. Greytak Professor of Physics, Associate Department Head for Education 2 Quantum Reflection of Bose-Einstein Condensates by Thomas A. Pasquini Submitted to the Department of Physics on August 21, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Abstract Recent developments in atom optics have brought Bose-Einstein condensates within 1 µm of solid surfaces where the atom-surface interactions can no longer be ignored. At long- range, the atom-surface interaction is described by the weakly attractive Casimir-Polder potential which is classically predicted to accelerate an incident atom toward the surface where it will interact strongly with the internal modes of the surface, lose energy, and land in a bound state of the surface. When the incident atom is very cold, on the order of a few nanokelvin, however, the acceleration of the atomic wavefunction is so abrupt that the atom may partially reflect from the attractive tail in a process known as quantum reflection. This work presents experimental evidence for quantum reflection from a solid surface at normal incidence.
    [Show full text]
  • The Bose-Einstein Condensate and Cold Atom Laboratory
    Bates College SCARAB All Faculty Scholarship Departments and Programs 12-1-2021 The Bose-Einstein Condensate and Cold Atom Laboratory Kai Frye Sven Abend Wolfgang Bartosch Ahmad Bawamia Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik Dennis Becker See next page for additional authors Follow this and additional works at: https://scarab.bates.edu/faculty_publications Recommended Citation Frye, K., Abend, S., Bartosch, W. et al. The Bose-Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technol. 8, 1 (2021). https://doi.org/10.1140/epjqt/s40507-020-00090-8 This Article is brought to you for free and open access by the Departments and Programs at SCARAB. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of SCARAB. For more information, please contact [email protected]. Authors Kai Frye, Sven Abend, Wolfgang Bartosch, Ahmad Bawamia, Dennis Becker, Holger Blume, Claus Braxmaier, Sheng Wey Chiow, Maxim A. Efremov, Wolfgang Ertmer, Peter Fierlinger, Tobias Franz, Naceur Gaaloul, Jens Grosse, Christoph Grzeschik, Ortwin Hellmig, Victoria A. Henderson, Waldemar Herr, Ulf Israelsson, James Kohel, Markus Krutzik, Christian Kürbis, Claus Lämmerzahl, Meike List, Daniel Lüdtke, Nathan Lundblad, J. Pierre Marburger, Matthias Meister, Moritz Mihm, Holger Müller, and Hauke Müntinga This article is available at SCARAB: https://scarab.bates.edu/faculty_publications/205 Frye et al. EPJ Quantum Technology (2021)8:1 https://doi.org/10.1140/epjqt/s40507-020-00090-8 R E S E A R C H Open Access The Bose-Einstein Condensate and Cold Atom Laboratory Kai Frye1* , Sven Abend1, Wolfgang Bartosch1,AhmadBawamia2, Dennis Becker1,HolgerBlume3, Claus Braxmaier4,5, Sheng-Wey Chiow6,MaximA.Efremov7,8,WolfgangErtmer1,9, Peter Fierlinger10, Tobias Franz11, Naceur Gaaloul1, Jens Grosse4,5, Christoph Grzeschik12, Ortwin Hellmig13, Victoria A.
    [Show full text]
  • Quantum Transport and Control of Atomic Motion with Light
    Copyright by Braulio Guti¶errez-Medina 2004 The Dissertation Committee for Braulio Guti¶errez-Medina certi¯es that this is the approved version of the following dissertation: Quantum Transport and Control of Atomic Motion with Light Committee: Mark G. Raizen, Supervisor Joe C. Campbell Duane A. Dicus Manfred Fink Greg O. Sitz Quantum Transport and Control of Atomic Motion with Light by Braulio Guti¶errez-Medina,B.S. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Ful¯llment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN August 2004 To my family x Dicen que en el ri~n¶onde Andaluc¶³ahubo una escuela de m¶edicos.El maestro preguntaba: ->Qu¶ehay con este enfermo, Pepillo? -Para m¶³{respond¶³ael disc¶³pulo{que se trae una cefalalgia entre pecho y espalda que lo tiene frito. ->Y por qu¶elo dices, salado? -Se~normaestro: porque me sale del alma. ALFONSO REYES Acknowledgments I would like to thank my advisor Mark Raizen, for giving me the opportunity to work in such an exceptional lab. Mark is an extraordinary physicist always developing new ideas, which he shares with his students with contagious en- thusiasm. It has been an invaluable learning experience working together with him over the past six years. When I joined the lab in the summer of 1998, I started working with Martin Fischer. Since then, until he graduated, I never stopped asking him questions, which he answered always with patience and an e®ort to make things clear.
    [Show full text]