One Fungus = Which Name ?

Total Page:16

File Type:pdf, Size:1020Kb

One Fungus = Which Name ? ONE FUNGUS = WHICH NAME ? The special provisions that permitted a link to this through the CBS home-page Fungi (NCF) or ICTF; those discussions asexual morphs of the same species of to Youtube (http://www.youtube.com/pl are also summarized below. pleomorphic non-lichenized ascomycete aylist?list=PLF8BF8F71D5A3AEDC). It REPORTS and basidiomycete fungi to have separate was gratifying that 220 mycologists watched In addition to the formal parts of the names from that of the whole fungus, the proceedings via the videolink while they symposium, two new books were formally which was typified by a sexual morph, were in progress, and that since the meeting launched at a cocktail party on the first were ended at the International Botanical there had been hundreds of downloads of evening. John W. Taylor (IMA President) Congress in Melbourne in July 2011. presentations at the time this issue went to was presented with copies of the Ta xonomic These changes, that are embodied in press. This means that hundreds of individual Manual of the Erysiphales (Powdery Mildews) the forthcoming International Code of mycologists have so far been able to benefit by Uwe Braun and Roger A. Cook, and the Nomenclature for algae, fungi, and plants1, from the full talks of the symposium and Atlas of Soil Ascomycetes by Josep Guarro, followed after extensive debates and others still can do so. Josepa Gené, Alberto M. Stchigel, and M. consideration by different committees, There were 12 presentations in total, all José Figueras. Further information about and in particular The Amsterdam of which are freely available in the video- these works is presented in the Book News Declaration2. The Declaration resulted archive: section of this issue (pp. (35)–(36)). from the “One Fungus = One Name” One fungus which name: how do we proceed? symposium organized by the CBS-KNAW (David L. Hawksworth, Spain/UK)5. Fungal Biodiversity Centre (CBS) Post-Melbourne fungal nomenclature: an 1McNeill JM, Barrie FR. Buck WR, Demoulin V, under the auspices of the International overview (Lorelei Norvell,USA; Scott A. Greuter W, Hawksworth DL, Herendeen PS, Commission on the Taxonomy of Fungi Redhead, Canada). Knapp S, Marhold K, Prado J, Pru’homme (ICTF) and held in Amsterdam on 19–20 Why hyphomycete taxonomy is now more van Reine WF, Smith GE, Wiersema JH, April 2011 (see IMA Fungus 2: (7), important than ever (Keith A. Seifert, Turland NJ (eds) (2012a) International Code 2011). Summaries of the changes which Canada). of Nomenclature for algae, fungi, and plants were introduced have been presented The nomenclature side of fungal databases, (Melbourne Code) adopted by the Eighteenth elsewhere3, 4 and are not repeated here, but registration, etc (Joost A. Stalpers, The International Botanical Congress Melbourne, it is important that the published version Netherlands; Paul M. Kirk, UK). Australia, July 2011. [Regnum Vegetabile, in of the Code is consulted for the final Single names in Hypocreales and press.] Ruggell: A.R.G. Ganter Verlag. wordings. Diaporthales (Amy Y. Rossman, USA). 2Hawksworth DL Crous PW, Redhead SA, Mycologists now have the tasks of Applications of old anamorph-typified names Reynolds DR, Samson RA, Seifert KA, Taylor implementing the changes in their own of genera and species (Uwe Braun)6. JW, Wingfield MJ [& 69 signatories] (2011) publications, and also contributing to the A strategy for fungal names with teleomorph- The Amsterdam Declaration on Fungal production of Accepted and Rejected Lists anamorph connections (Xing-Zhang Liu, Nomenclature. IMA Fungus 2: 105–112; of names. Recognizing the uncertainties China). Mycotaxon 116: 91–500 some mycologists expressed as how to The future of fungal biodiversity research 3Hawksworth DL (2011) A new dawn for the proceed, and also the need to progress (Pedro W. Crous, The Netherlands). naming of fungi: impacts of decisions made work on the Lists, CBS organized a Naming environmental nucleic acid species in Melbourne in July 2011 on the future follow-up symposium on “One Fungus = (ENAS) (John W. Taylor, USA). publication and regulation of fungal names. Which Name?” in the rooms of the Royal The value of epitypification (Kevin D. Hyde, MycoKeys 1: 7–20; IMA Fungus 2: 155–162. Netherlands Academy of Arts and Sciences China/Thailand). 4Norvell LL (2011) Fungal nomenclature. 1. in Amsterdam on Thursday and Friday 12– An official DNA barcode for fungi (Conrad Melbourne approves a new Code. Mycotaxon 13 April 2012. The meeting was attended Schoch, USA). 116: 481–490. by 155 mycologists from 29 countries, 1000 fungal genomes and beyond (Joey 5Hawksworth DL (2012) Managing and coping almost all of whom were thrilled at the Spatafora, USA). with names of pleomorphic fungi in a period ending of the dual nomenclatural system of transition. Mycosphere 3 (2): 52–64; IMA and enthusiastic at the prospect of Accepted A series of break-out group discussions, Fungus 3: 15–24. Lists which would place mycology at the primarily focused on different fungal taxa, 6Braun U (2012) The impacts of the discontinuation cutting edge of biological nomenclature as was held on the Thursday afternoon, and of dual nomenclature of pleomorphic fungi: a whole. those groups were charged with reporting the trivial facts, problems, and strategies. IMA Each day of the symposium was at the end of the next day. Prior to the Fungus 3: 81–86. organized in the form of a series of presentation of these reports, which are presentations in the morning, and discussion reproduced below, an open discussion was The One Fungus = Which groups or debates in the afternoon. In a new held to clarify aspects of the new provisions Name ? debate venture aimed at making the presentations or other matters that some present had as widely available as possible, the talks found unclear, and further to ascertain the Chair: David L Hawksworth were also videoed and made available via views of those present on various issues that Rapporteur: John W. Taylor the Internet in real-time. Subsequently, a needed to be addressed by those developing Issues considered in this part of the meeting video-archive of the talks was compiled with Lists and the Nomenclature Committee for fell into two categories, a clarification of (10) IMA FUNGUS concepts and possibilities, and view on fungi, or just those in a particular order or (5) Continued use of binomials in REPORTS topics where the ICTF and NCF would family. It is really a matter for mycologists synonymized genera appreciate guidance. concerned with different groups of fungi to decide what protected Lists would be There will be many cases in moving to one Clarification of concepts and of most value to them and which should name per species in pleomorphic fungi, where possibilities be prepared first. As there is evidently no it is uncertain whether all species currently obstacle to Lists being revised or replaced, under a particular name are congeneric with (1) Names on an Accepted List are NOT unlike the situation with the already existing the type species of the generic name to be conserved, BUT treated as if conserved lists of conserved and rejected names, there adopted. This situation is no different from could be some advantage in concentrating that already occurring in non-pleomorphic Some speakers had used the term on generic names first, and adding species genera where it has not been possible to “conserved” for names that would be names at a later date. ascertain the positions of all taxa previously included on the Accepted Lists of names, There was almost unanimous and referred to them. The Code does not rule but their status will not be identical to that enthusiastic support for first producing a on taxonomy, and, if there are no certain of formally conserved names as, under the List covering all accepted generic names grounds to transfer a species from on genus to new Code, names included in the Lists of (including those of lichen-forming fungi, another, there is no nomenclatural obstacle to Conserved Names would have precedence see below), whether or not they exhibited the continued use of the current name until over those on the Accepted Lists. Further, pleomorphism. the matter is resolved. This matter is discussed names that are formally conserved cannot be There was a strong feeling at the further elsewhere in this issue8. This situation deleted, whereas there is no such restriction meeting that provisional Lists should be is pragmatic not ideal, and one option used for names on the Accepted Lists. The open for consideration by the community by some mycologists is to indicate in an meeting found this confusing, and felt that as a whole before submission, in order to informal way that a generic name is being a different term should be found to replace iron out any controversy. It was suggested retained in a wide sense, for example by the “treated as if conserved.” One possibility that draft Lists be put on the IMA website, use of inverted commas, e.g. ´Mycosphaerella´ could be refer to names as “White-“ or with options for comment so as to work where it is unclear if the fungus is truly a “Black-listed. It had also been suggested by towards a consensus. Cladosporium (syn. Davidiella) in the new Gams et al.7, that the terms “prioritization” system. Wholesale uncritical transfer of and “suppression” were preferable to help (3) Typification of names in Lists names is to be discouraged. minimize possibilities of confusion, and that option should be referred to the NCF for It is already possible to change the name- (6) Who can prepare and submit Lists? consideration. bearing type of a name by conservation, and there appears to be no obstacle to There is no restriction on who can produce (2) What names can be included in the this in the new Lists.
Recommended publications
  • Taxonomy and Phylogenetic Relationships of Nine Species of Hypocrea with Anamorphs Assignable to Trichoderma Section Hypocreanum
    STUDIES IN MYCOLOGY 56: 39–65. 2006. doi:10.3114/sim.2006.56.02 Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum Barrie E. Overton1*, Elwin L. Stewart2 and David M. Geiser2 1The Pennsylvania State University, Department of Plant Pathology, Buckhout Laboratory, University Park, Pennsylvania 16802, U.S.A.: Current address: Lock Haven University of Pennsylvania, Department of Biology, 119 Ulmer Hall, Lock Haven PA, 17745, U.S.A.; 2The Pennsylvania State University, Department of Plant Pathology, Buckhout Laboratory, University Park, Pennsylvania 16802, U.S.A. *Correspondence: Barrie E. Overton, [email protected] Abstract: Morphological studies and phylogenetic analyses of DNA sequences from the internal transcribed spacer (ITS) regions of the nuclear ribosomal gene repeat, a partial sequence of RNA polymerase II subunit (rpb2), and a partial sequence of the large exon of tef1 (LEtef1) were used to investigate the taxonomy and systematics of nine Hypocrea species with anamorphs assignable to Trichoderma sect. Hypocreanum. Hypocrea corticioides and H. sulphurea are reevaluated. Their Trichoderma anamorphs are described and the phylogenetic positions of these species are determined. Hypocrea sulphurea and H. subcitrina are distinct species based on studies of the type specimens. Hypocrea egmontensis is a facultative synonym of the older name H. subcitrina. Hypocrea with anamorphs assignable to Trichoderma sect. Hypocreanum formed a well-supported clade. Five species with anamorphs morphologically similar to sect. Hypocreanum, H. avellanea, H. parmastoi, H. megalocitrina, H. alcalifuscescens, and H. pezizoides, are not located in this clade. Protocrea farinosa belongs to Hypocrea s.s. Taxonomic novelties: Hypocrea eucorticioides Overton, nom.
    [Show full text]
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Biodiversity of Trichoderma in Neotropics
    13 Biodiversity of Trichoderma in Neotropics Lilliana Hoyos-Carvajal1 and John Bissett2 1Universidad Nacional de Colombia, Sede Bogotá 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa 1Colombia 2Canada 1. Introduction Trichoderma species frequently are predominant over wide geographic regions in all climatic zones, where they are significant decomposers of woody and herbaceous materials. They are characterized by rapid growth, an ability to assimilate a diverse array of substrates, and by their production of an range of antimicrobials. Strains have been exploited for production of enzymes and antibiotics, bioremediation of xenobiotic substances, and as biological control agents against plant pathogenic fungi and nematodes. The main use of Trichoderma in global trade is derived from its high production of enzymes. Trichoderma reesei (teleomorph: Hypocrea jecorina) is the most widely employed cellulolytic organism in the world, although high levels of cellulase production are also seen in other species of this genus (Baig et al., 2003, Watanabe et al., 2006). Worldwide sales of enzymes had reached the figure of $ 1.6 billion by the year 2000 (Demain 2000, cited by Karmakar and Ray, 2011), with an annual growth of 6.5 to 10% not including pharmaceutical enzymes (Stagehands, 2008). Of these, cellulases comprise approximately 20% of the enzymes marketed worldwide (Tramoy et al., 2009). Cellulases of microbial origin are used to process food and animal feed, biofuel production, baking, textiles, detergents, paper pulp, agriculture and research areas at all levels (Karmakar and Ray, 2011). Most cellulases are derived from Trichoderma (section Longibrachiatum in particular) and Aspergillus (Begum et al., 2009).
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • <I>Mucorales</I>
    Persoonia 30, 2013: 57–76 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X666259 The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies K. Hoffmann1,2, J. Pawłowska3, G. Walther1,2,4, M. Wrzosek3, G.S. de Hoog4, G.L. Benny5*, P.M. Kirk6*, K. Voigt1,2* Key words Abstract The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional Mucorales classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been families investigated in detail but a robust classification of the higher levels based on DNA data has not been published phylogeny yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.
    [Show full text]
  • DNA Barcoding in <I>Mucorales</I>: an Inventory of Biodiversity
    UvA-DARE (Digital Academic Repository) DNA barcoding in Mucorales: an inventory of biodiversity Walther, G.; Pawłowska, J.; Alastruey-Izquierdo, A.; Wrzosek, W.; Rodriguez-Tudela, J.L.; Dolatabadi, S.; Chakrabarti, A.; de Hoog, G.S. DOI 10.3767/003158513X665070 Publication date 2013 Document Version Final published version Published in Persoonia - Molecular Phylogeny and Evolution of Fungi Link to publication Citation for published version (APA): Walther, G., Pawłowska, J., Alastruey-Izquierdo, A., Wrzosek, W., Rodriguez-Tudela, J. L., Dolatabadi, S., Chakrabarti, A., & de Hoog, G. S. (2013). DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia - Molecular Phylogeny and Evolution of Fungi, 30, 11-47. https://doi.org/10.3767/003158513X665070 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 Persoonia 30, 2013: 11–47 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X665070 DNA barcoding in Mucorales: an inventory of biodiversity G.
    [Show full text]
  • Isolation of an Emerging Thermotolerant Medically Important Fungus, Lichtheimia Ramosa from Soil
    Vol. 14(6), pp. 237-241, June, 2020 DOI: 10.5897/AJMR2020.9358 Article Number: CC08E2B63961 ISSN: 1996-0808 Copyright ©2020 Author(s) retain the copyright of this article African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Isolation of an emerging thermotolerant medically important Fungus, Lichtheimia ramosa from soil Imade Yolanda Nsa*, Rukayat Odunayo Kareem, Olubunmi Temitope Aina and Busayo Tosin Akinyemi Department of Microbiology, Faculty of Science, University of Lagos, Nigeria. Received 12 May, 2020; Accepted 8 June, 2020 Lichtheimia ramosa, a ubiquitous clinically important mould was isolated during a screen for thermotolerant fungi obtained from soil on a freshly burnt field in Ikorodu, Lagos State. In the laboratory, as expected it grew more luxuriantly on Potato Dextrose Agar than on size limiting Rose Bengal Agar. The isolate had mycelia with a white cottony appearance on both media. It was then identified based on morphological appearance, microscopy and by fungal Internal Transcribed Spacer ITS-5.8S rDNA sequencing. This might be the first report of molecular identification of L. ramosa isolate from soil in Lagos, as previously documented information could not be obtained. Key words: Soil, thermotolerant, Lichtheimia ramosa, Internal Transcribed Spacer (ITS). INTRODUCTION Zygomycetes of the order Mucorales are thermotolerant L. ramosa is abundant in soil, decaying plant debris and moulds that are ubiquitous in nature (Nagao et al., 2005). foodstuff and is one of the causative agents of The genus Lichtheimia (syn. Mycocladus, Absidia) mucormycosis in humans (Barret et al., 1999). belongs to the Zygomycete class and includes Mucormycosis is an opportunistic invasive infection saprotrophic microorganisms that can be isolated from caused by Lichtheimia, Mucor, and Rhizopus of the order decomposing soil and plant material (Alastruey-Izquierdo Mucorales.
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Syzygites Megalocarpus (Mucorales, Zygomycetes) in Illinois
    Transactions of the Illinois State Academy of Science received 12/8/98 (1999), Volume 92, 3 and 4, pp. 181-190 accepted 6/2/99 Syzygites megalocarpus (Mucorales, Zygomycetes) in Illinois R. L. Kovacs1 and W. J. Sundberg2 Department of Plant Biology, Mail Code 6509 Southern Illinois University at Carbondale Carbondale, Illinois 62901-6509 1Current Address: Salem Academy; 942 Lancaster Dr. NE; Salem, OR 97301 2Corresponding Author ABSTRACT Syzygites megalocarpus Ehrenb.: Fr. (Mucorales, Zygomycetes), which occurs on fleshy fungi and was previously unreported from Illinois, has been collected from five counties- -Cook, Gallatin, Jackson, Union, and Williamson. In Illinois, S. megalocarpus occurs on 23 species in 18 host genera. Fresh host material collected in the field and appearing uninfected can develop S. megalocarpus colonies after incubation in the laboratory. The ability of S. megalocarpus to colonize previously uninfected hosts was demonstrated by inoculation studies in the laboratory. Because the known distribution of potential hosts in Illinois is much broader than documented here, further attention to S. megalocarpus should more fully elucidate the host and geographic ranges of this Zygomycete in the state. Using light and scanning electron microscopy, the heretofore unmeasured warts on the zygosporangium were 4-6 µm broad and 5-8 µm high, providing additional informa- tion for circumscription of this genus. INTRODUCTION Syzygites (Mucorales, Zygomycetes) is a presumptive mycoparasite that occurs on fleshy fungi (Figs. 1-2) and contains a single species, S. megalocarpus Ehrenb.: Fr. (Hesseltine 1957). It is homothallic and forms erect sporangiophores which are dichotomously branched and bear columellate, multispored sporangia at their apices (Fries 1832, Hes- seltine 1957, Benny and O'Donnell 1978, O'Donnell 1979).
    [Show full text]
  • Epidemiological Alert: COVID-19 Associated Mucormycosis
    Epidemiological Alert: COVID-19 associated Mucormycosis 11 June 2021 Given the potential increase in cases of COVID-19 associated mucormycosis (CAM) in the Region of the Americas, the Pan American Health Organization / World Health Organization (PAHO/WHO) recommends that Member States prepare health services in order to minimize morbidity and mortality due to CAM. Introduction In recent months, an increase in reports of cases of Mucormycosis (previously called zygomycosis) is the term used to name invasive fungal infections (IFI) COVID-19 associated Mucormycosis (CAM) has caused by saprophytic environmental fungi, been observed mainly in people with underlying belonging to the subphylum Mucoromycotina, order diseases, such as diabetes mellitus (DM), diabetic Mucorales. Among the most frequent genera are ketoacidosis, or on steroids. In these patients, the Rhizopus and Mucor; and less frequently Lichtheimia, most frequent clinical manifestation is rhino-orbital Saksenaea, Rhizomucor, Apophysomyces, and Cunninghamela (Nucci M, Engelhardt M, Hamed K. mucormycosis, followed by rhino-orbital-cerebral Mucormycosis in South America: A review of 143 mucormycosis, which present as secondary reported cases. Mycoses. 2019 Sep;62(9):730-738. doi: infections and occur after SARS CoV-2 infection. 1,2 10.1111/myc.12958. Epub 2019 Jul 11. PMID: 31192488; PMCID: PMC6852100). Globally, the highest number of cases has been The infection is acquired by the implantation of the reported in India, where it is estimated that there spores of the fungus in the oral, nasal, and are more than 4,000 people with CAM.3 conjunctival mucosa, by inhalation, or by ingestion of contaminated food, since they quickly colonize foods rich in simple carbohydrates.
    [Show full text]
  • Jemds.Com Original Research Article
    Jemds.com Original Research Article PATHOGENIC FUNGAL CONTAMINATION OF MUNICIPAL DUMPING YARD, KOTTAYAM AND RELATED HEALTH EFFECTS Vipinunni1, Bernaitis L2, Sabarianand3, Preesly M. S4, Revathi P. Shenoy5 1Lecturer, RVS Dental College, Coimbatore. 2Lecturer, RVS Dental College, Coimbatore. 3Lecturer, Mahatma Gandhi Medical College, Pondicherry. 4Lecturer, RVS Siddha Medical College & Hospital, Coimbatore. 5Associate Professor, Kasturba Medical College, Manipal. ABSTRACT BACKGROUND Fungi are ubiquitous soil saprophytes often involved in various human ailments. Fungal diseases are emerging worldwide. However, the mycological health risks associated with dumping yard is not much investigated, especially from developing countries where such sites are very common. Aims and Objectives- The major objective of the study was to analyse the possible mycological threat posed by the municipal dumping yard. The study also aims to assess the health status of interacting community in relation to the dumping yard. MATERIALS AND METHODS A descriptive study was conducted from April to June 2015 in Kottayam Municipal dumping yard at Vadavathoor. Two set of soil samples, a total of 50 from the dumping yard were collected, before and after burning of the dumping yard. One set of samples from leachate and neighbouring open wells were collected after burning of the dumping yard. Samples were collected in sterile containers and transported immediately to the laboratory. The samples were cultured on to suitable fungal culture medium and the growths of the fungus were identified by the microscopic and macroscopic features. RESULTS The isolated fungal pathogens from the soil shows that 49% isolates belonged to the Aspergillus genus; and the remaining 51% was almost equally shared by four other different species Geotrichum, Humicola, Microsporum, Rhizopus.
    [Show full text]