New Perspectives on Anthropoid Origins

Total Page:16

File Type:pdf, Size:1020Kb

New Perspectives on Anthropoid Origins PERSPECTIVE New perspectives on anthropoid origins Blythe A. Williamsa,1, Richard F. Kaya, and E. Christopher Kirkb aDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708-0383; and bDepartment of Anthropology, University of Texas, Austin, TX 78712 Edited by Alan Walker, Penn State University, University Park, PA, and approved January 19, 2010 (received for review September 22, 2009) Adaptive shifts associated with human origins are brought to light as we examine the human fossil record and study our own genome and that of our closest ape relatives. However, the more ancient roots of many human characteristics are revealed through the study of a broader array of living anthropoids and the increasingly dense fossil record of the earliest anthropoid radiations. Genomic data and fossils of early primates in Asia and Africa clarify relationships among the major clades of primates. Progress in comparative anatomy, genomics, and molecular biology point to key changes in sensory ecology and brain organization that ultimately set the stage for the emergence of the human lineage. primate | Haplorhini | Strepsirrhini | human evolution | phylogeny uman evolution did not begin primates (lemurs and lorises) is also well fossil record remains sparse and 6–8 million years ago with the supported by morphological and molecular incomplete. For decades, anthropoid H phylogenetic split between the evidence. However, the question of ancestors were sought in two taxonomically chimpanzee and human line- whether tarsiers are more closely related diverse radiations of primarily Eocene ages. Although the ape–human transition to anthropoids or strepsirrhines has been taxa: Omomyiformes and Adapiformes is of tremendous interest to specialists and less clear. Some classifications united (sometimes identified at the family or the general public, many key genetic tarsiers with strepsirrhines in the suborder superfamily level). Both groups are events and adaptive shifts leading to the Prosimii because they retain primitive common in North American and European origin of humans had already been set in features such as grooming claws and an Paleogene faunas and also occur in Africa motion long before this split. The seeds of unfused mandibular symphysis. An and Asia (5). Omomyiforms are fi fi these changes can be identi ed in the alternative phylogenetic classi cation considered haplorhines, and adapiforms earlier branches of the primate family tree, linked tarsiers with anthropoids in the strepsirrhines by most workers (6–8, but many millions of years in the past. semiorder Haplorhini. Evidence for a see ref. 9), although few characters Changes in sensory ecology, increases in haplorhine clade comes from an unambiguously support omomyiforms as brain size, and reorganization of the increasingly long list of derived hard and ’ haplorhine. The German adapiform brain s components set the stage for the soft tissue morphological features and from Darwinius was described as having features development of language and for many of molecular features. Molecular allying it, and by extension, other our other exceptional cognitive abilities. phylogenetic studies using DNA sequence adapiforms with Haplorhini (10). Recent well-publicized descriptions of data generally failed to provide strong However, Darwinius and other adapiforms fossil primates from Africa and Eurasia support for either Haplorhini or Prosimii share derived features with extant have reignited interest in the origins of (1). However, genetic markers called strepsirrhines and lack derived features Anthropoidea—monkeys, apes, and hu- short interspersed elements (SINEs) offer shared by extant tarsiers and anthropoids mans. Fossil discoveries are expanding our strong evidence in support of both – understanding of the diversity and bio- haplorhine and strepsirrhine monophyly. (6, 11 15). geography of this clade. Developments in SINEs are short segments of DNA that Several hypotheses about tarsier and molecular phylogenetics are establishing insert into the genome at apparently anthropoid origins have been proposed. a phylogenetic framework of living pri- random positions and are excellent Some researchers argue that anthropoids mates against which hypotheses about re- phylogenetic markers with an extraor- and tarsiers share a common ancestor lationships of fossils can be tested. dinarily low probability of convergent within a paraphyletic Omomyiformes Advances in genomics and the study of evolution (2). Because there are billions of whereas others assert that only tarsiers living primate ecology are enabling us to potential insertion sites in any primate have omomyiform ancestry. An alternative understand key adaptive changes in an- genome, the probability of a SINE hypothesis that we favor is that the tarsier- thropoid evolution and have reframed inserting precisely in the same locus in two anthropoid clade is the sister group of many of our adaptive questions about separate evolutionary lineages is omomyiforms as a whole. This last option human origins in the context of deep time. “exceedingly minute, and for all practical is supported by a comprehensive Here we review recent fossil discoveries, purposes, can be ignored” (p. 151, ref. 3). phylogenetic analysis (11). The developments in the study of the sensory Five SINEs support haplorhine mono- hypothetical common ancestor of tarsiers, ecology and neurobiology of anthropoids, phyly to the exclusion of strepsirrhines and anthropoids, and omomyiforms has yet to and implications from genetic research eight are shared among strepsirrhines (4). be identified, but must predate the oldest that bear on the study of Thus, the haplorhine–strepsirrhine split omomyiform, Teilhardina, from the anthropoid origins. may now be regarded as fact and must earliest Eocene of North America, underlie any phylogenetic reconstruction Europe, and Asia (16). Phylogenetics of Crown Primates of fossil primates. In the past, separate origins were Identification of which taxa of early considered for the two living clades of primates are haplorhines and which are Author contributions: B.A.W., R.F.K., and E.C.K. analyzed anthropoid primates: the New World strepsirrhines is an ongoing challenge data and B.A.W., R.F.K., and E.C.K. wrote the paper. platyrrhines and the Old World because homoplasy is common, the The authors declare no conflict of interest. catarrhines. Today, Anthropoidea is evolutionary acquisition of diagnostic This article is a PNAS Direct Submission. accepted universally as a monophyletic haplorhine and anthropoid characters 1To whom correspondence should be addressed. E-mail: group. The monophyly of the strepsirrhine occurred in mosaic fashion, and the [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.0908320107 PNAS Early Edition | 1of8 Downloaded by guest on September 30, 2021 What Is an Anthropoid? features found in living anthropoids, as have given rise to catarrhines, platyrrhines, By definition, crown Anthropoidea includes discussed below. We do not know the both, or neither (13). all species, living and fossil, descended character states for many of the presumed Propliopithecids (Aegyptopithecus and from the last common ancestor of extant Eocene anthropoids from Asia because Propliopithecus) are widely accepted as the anthropoids. Stem Anthropoidea includes they are not yet known from adequate earliest definitive representatives of the all fossil taxa that are more closely related cranial materials. Postcranial materials of catarrhine primates because of their to crown anthropoids than they are to putative Asian stem anthropoids have been dental formula (two premolars) and tarsiers, but are outside the anthropoid found in isolation, complicating their details of molar anatomy greatly fi crown group. Crown anthropoids share a speci c attribution. resembling early Miocene catarrhines number of important features. On the from east Africa (37). Oligopithecids may basis of evidence from comprehensive Anthropoid Fossils and be catarrhines. They retain some primitive phylogenetic analyses (11, 13, 17, 18), Revised Dates characteristics (small brain and unfused many of these features are considered Afro-Arabian Anthropoids. In the past mandibular symphysis), yet the dental synapomorphies. Four peculiarities of decade, finds of fossil primates have formula, large ascending process of the embryonic implantation have been augmented our picture of early premaxilla, and several features of the described (19). Extant anthropoids share talus, humerus, and femur all support anthropoids and broadened the fi 27 Alu-SINE markers (4). Most biogeographic focus of studies of catarrhine af nities (33). anthropoids have orbits that are relatively anthropoid origins (Fig. 1 and Fig. 2). Other poorly known African Paleogene small, forward facing, and convergent (20). Early anthropoids are best known from primates may be anthropoids. Altiatlasius A bony lamina posterior to the orbit the phylogenetically diverse faunas of (late Paleocene, Morocco) was described completely separates the eyes from the Afro-Arabia, especially those of the as an omomyiform (38) but may be a stem chewing muscles in the temporal fossa Fayum Depression in Egypt. The youngest anthropoid (11, 38, 39) or a stem (21). A number of other soft-tissue of the Fayum primate-bearing deposits euprimate (40). Afrotarsius, from the features of the visual system (e.g., an all- date to the Oligocene, ∼30 Ma, whereas Egyptian Oligocene, resembles stem cone retinal fovea) are anthropoid the oldest are late
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • Fascinating Primates 3/4/13 8:09 AM Ancient Egyptians Used Traits of an Ibis Or a Hamadryas Used Traits Egyptians Ancient ) to Represent Their God Thoth
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Fascinating Primates Fascinating The Beginning of an Adventure Ever since the time of the fi rst civilizations, nonhuman primates and people have oc- cupied overlapping habitats, and it is easy to imagine how important these fi rst contacts were for our ancestors’ philosophical refl ections. Long ago, adopting a quasi- scientifi c view, some people accordingly regarded pri- mates as transformed humans. Others, by contrast, respected them as distinct be- ings, seen either as bearers of sacred properties or, conversely, as diabolical creatures. A Rapid Tour around the World In Egypt under the pharaohs, science and religion were still incompletely separated. Priests saw the Papio hamadryas living around them as “brother baboons” guarding their temples. In fact, the Egyptian god Thoth was a complex deity combining qualities of monkeys and those of other wild animal species living in rice paddies next to temples, all able to sound the alarm if thieves were skulking nearby. At fi rst, baboons represented a local god in the Nile delta who guarded sacred sites. The associated cult then spread through middle Egypt. Even- tually, this god was assimilated by the Greeks into Hermes Trismegistus, the deity measuring and interpreting time, the messenger of the gods. One conse- quence of this deifi cation was that many animals were mummifi ed after death to honor them. Ancient Egyptians used traits of an ibis or a Hamadryas Baboon (Papio hamadryas) to represent their god Thoth.
    [Show full text]
  • Downloaded from Brill.Com09/27/2021 09:14:05PM Via Free Access 218 Rode-Margono & Nekaris – Impact of Climate and Moonlight on Javan Slow Lorises
    Contributions to Zoology, 83 (4) 217-225 (2014) Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus javanicus Geoffroy, 1812) Eva Johanna Rode-Margono1, K. Anne-Isola Nekaris1, 2 1 Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK 2 E-mail: [email protected] Keywords: activity, environmental factors, humidity, lunarphobia, moon, predation, temperature Abstract Introduction Predation pressure, food availability, and activity may be af- To secure maintenance, survival and reproduction, fected by level of moonlight and climatic conditions. While many animals adapt their behaviour to various factors, such nocturnal mammals reduce activity at high lunar illumination to avoid predators (lunarphobia), most visually-oriented nocturnal as climate, availability of resources, competition, preda- primates and birds increase activity in bright nights (lunarphilia) tion, luminosity, habitat fragmentation, and anthropo- to improve foraging efficiency. Similarly, weather conditions may genic disturbance (Kappeler and Erkert, 2003; Beier influence activity level and foraging ability. We examined the 2006; Donati and Borgognini-Tarli, 2006). According response of Javan slow lorises (Nycticebus javanicus Geoffroy, to optimal foraging theory, animal behaviour can be seen 1812) to moonlight and temperature. We radio-tracked 12 animals as a trade-off between the risk of being preyed upon in West Java, Indonesia, over 1.5 years, resulting in over 600 hours direct observations. We collected behavioural and environmen- and the fitness gained from foraging (Charnov, 1976). tal data including lunar illumination, number of human observ- Perceived predation risk assessed through indirect cues ers, and climatic factors, and 185 camera trap nights on potential that correlate with the probability of encountering a predators.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Avahi Laniger)
    A. Zaramody et al.: Phylogeny of Eastern Woolly Lemurs MOLECULAR PHYLOGENY AND TAXONOMIC REVISION OF THE EASTERN WOOLLY LEMURS (AVAHI LANIGER) Zaramody A, Fausser J-L, Roos C, Zinner D, Andriaholinirina N, Rabarivola C, Norscia I, Tattersall I and Rumpler Y Key words: Avahi, Strepsirrhini, taxonomy, mtDNA, cytogenetics, new species Abstract The western and northern populations of woolly lemurs (Avahi) have been di- vided into three distinct species (A. cleesei, A. occidentalis and A. unicolor), whereas the eastern populations are still considered to represent a single species (A. laniger), despite the wider distribution of woolly lemurs in this region. To analyze the diver- sity within the eastern population and among the eastern and western populations, we compared cytogenetic data and mitochondrial DNA (mtDNA) sequences from woolly lemurs from 14 sites in the east of Madagascar and from three sites in the west, representing three of the four recognized species. Cytogenetic and mtDNA data are in agreement and confirm the distinctiveness of A. laniger and A. occiden- talis. Within A. laniger the molecular data revealed large genetic distances among local populations. On the basis of these new data we propose to split A. laniger into three species: (1) north of the Mongoro/Onive Rivers, (2) south of the Mongoro/Onive Rivers at least as far south as Mahasoarivo, and (3) from the south-east (Manombo, Sainte Luce). Within the south-eastern species (3) two clearly separated subspecies can be distinguished, one from the region of Manombo and the other from the region of Sainte Luce. The northern species (1) shows considerable intraspecies genetic dis- tances and may consist of several populations distinguishable as subspecies.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Calcaneal Proportions in Primates and Locomotor Inferences in Anchomomys and Other Palaeogene Euprimates
    Swiss J Palaeontol (2012) 131:147–159 DOI 10.1007/s13358-011-0032-5 Calcaneal proportions in primates and locomotor inferences in Anchomomys and other Palaeogene Euprimates Salvador Moya`-Sola` • Meike Ko¨hler • David M. Alba • Imma Roig Received: 3 October 2011 / Accepted: 21 November 2011 / Published online: 8 December 2011 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2011 Abstract Foot proportions, and in particular the length- inferred only when anterior calcaneal length departs from ening of the tarsal elements, play a fundamental role in the the scaling of non-specialized primate groups. The role of discussion on the locomotor adaptations of Palaeogene leaping on the inferred locomotor repertoire of earliest primates. The elongation of the distal portion of the tarsus, primates needs to be revised considering the results of this particularly the anterior part of the calcaneus, is frequently work. interpreted as an adaptation to leaping and has played a fundamental role in the reconstruction of the locomotor Keywords Fossil and extant primates Á Foot Á adaptations of the earliest primates. Here, we report an Calcaneal proportions Á Allometry Á Grasping Á allometric analysis of calcaneal proportions in primates and Leaping Á Anchomomys other mammals, in order to determine the actual differ- ences in calcaneal proportions. This analysis reveals that primates as a group display a relatively longer distal cal- Introduction caneus, relative to both total calcaneal length and body mass, when compared with other mammals. Contrary to The origin of primates of modern aspect (euprimates) was current expectations, morphofunctional analysis indicates characterized by a profound reorganization of the post- that a moderate degree of calcaneal elongation is not an cranial anatomy apparently related to arboreal locomotion adaptation to leaping, but it is merely a compensatory (Dagosto 1988).
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Climate Wars Science and Its Disputers Oprah's Gullibility How
    SI M/A 2010 Cover V1:SI JF 10 V1 1/22/10 12:59 PM Page 1 MARTIN GARDNER ON JAMES ARTHUR RAY | JOE NICKELL ON JOHN EDWARD | 16 NEW CSI FELLOWS THE MAG A ZINE FOR SCI ENCE AND REA SON Vol ume 34, No. 2 • March / April 2010 • INTRODUCTORY PRICE U.S. and Canada $4.95 Climate Wars Science and Its Disputers Oprah’s Gullibility How Should Skeptics Deal with Cranks? Why Witchcraft Persists SI March April 2010 pgs_SI J A 2009 1/22/10 4:19 PM Page 2 Formerly the Committee For the SCientiFiC inveStigation oF ClaimS oF the Paranormal (CSiCoP) at the Cen ter For in quiry/tranSnational A Paul Kurtz, Founder and Chairman Emeritus Joe Nickell, Senior Research Fellow Richard Schroeder, Chairman Massimo Polidoro, Research Fellow Ronald A. Lindsay, President and CEO Benjamin Radford, Research Fellow Bar ry Karr, Ex ec u tive Di rect or Richard Wiseman, Research Fellow James E. Al cock, psy chol o gist, York Univ., Tor on to David J. Helfand, professor of astronomy, John Pau los, math e ma ti cian, Tem ple Univ. Mar cia An gell, M.D., former ed i tor-in-chief, New Columbia Univ. Stev en Pink er, cog ni tive sci en tist, Harvard Eng land Jour nal of Med i cine Doug las R. Hof stad ter, pro fes sor of hu man un der - Mas si mo Pol id oro, sci ence writer, au thor, Steph en Bar rett, M.D., psy chi a trist, au thor, stand ing and cog ni tive sci ence, In di ana Univ.
    [Show full text]
  • Knowledge of the Evolution of African Paleogene Mammals
    Knowledge of the évolution of African Paleogene mammals Contribution of the Bir El Ater locality (Eocène, Algeria) Rodolphe Tabuce Brigitte Coiffait Philippe-Emmanuel Coiffait Mohamed Mahboubi Jean-Jacques Jaeger 1 1 Introduction: The Early African Paleogene mammals The African fossil record of therians begins with the Early Cretaceous ofthe Middle Atlas (Morocco) (Sigogneau-Russell, 1991); however, the modem mammalian orders appear only during the early Tertiary in North Africa (figure 1A). The Paleocene and Ypresian localities from the Ouarzazate Basin (Morocco) hâve yielded mammalian faunas with possible creodonts, « insectivores » (paleoryctids, todralestids and adapisoriculids) (Gheerbrant, 1992, 1994, 1995), the oldest représentative ofeupri- mates (Sigé et al, 1990) and archaic ungulates (Sudre et al, 1993). Recently, the discovery of Phosphatherium (Proboscidea) in J\) .... Ypresian Early to Mlddla Mlddlalo Lata C> mlcldla BOCena eocena Ialaeocene eocena "III N'Tagourt2 ElKohol GllbZagdou GourLazib Chambl lnTaliclel M'Bodlone Bir el Ater DoralTalha Qaar (Moroc:co) (Algerla) (Algerla) (Algerla) (Tunlala) and (Sanagal) (Algarla) ·Evaporlt e1Sagha lamagullell Unit· (Fayum, (Mali) (LIbye) Egypt) Matatharla Kassarinolherium tunisiansa Creodonta Koholis gen. el sp. Aprarodon stlasansa indet Hyaanodon Carnlvora Glibzagdouis I8balbslsensis Condylarthra Condyfarthra Condylarthra Inda!. Inda!. Artlodaetyla cl.Bolhrio- ganys sp. Proboscldell KhSmsBcornJS Numidotherium Moerilharium Moenlherium Moarilherium 8srytherium 8srythenum buJbosus
    [Show full text]